Structural changes to resorbable calcium phosphate bioceramic aged in vitro.

نویسندگان

  • Nazia Mehrban
  • James Bowen
  • Elke Vorndran
  • Uwe Gbureck
  • Liam M Grover
چکیده

This work investigates the effect of mammalian cell culture conditions on 3D printed calcium phosphate scaffolds. The purpose of the studies presented was to characterise the changes in scaffold properties in physiologically relevant conditions. Differences in crystal morphologies were observed between foetal bovine serum-supplemented media and their unsupplemented analogues, but not for supplemented media containing tenocytes. Scaffold porosity was found to increase for all conditions studied, except for tenocyte-seeded scaffolds. The presence of tenocytes on the scaffold surface inhibited any increase in scaffold porosity in the presence of extracellular matrix secreted by the tenocytes. For acellular conditions the presence or absence of sera proteins strongly affected the rate of dissolution and the distribution of pore diameters within the scaffold. Exposure to high sera protein concentrations led to the development of significant numbers of sub-micron pores, which was otherwise not observed. The implication of these results for cell culture research employing calcium phosphate scaffolds is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نقش پوشش های بیوسرامیکی در موفقیت ایمپلنت ها

Characterization of bioceramics coating and evaluation of the influence of kind of coating on the implantation has been developed in recent years.Different bioceramics coating like calcium phosphate, hydroxyapatite, fluorapatite and bioglass were coated on dental and orthopedic implants. In-vitro and in-vivo experiments were done for evolution of implant success and reliability and study of fac...

متن کامل

Combustion synthesis of calcium phosphate bioceramic powders

Calcium phosphate (hydroxyapatite and tri-calcium phosphate) bioceramics closely resembling, in chemical composition, those found in vivo in human bones have been synthesized by using novel synthetic body ̄uid solutions via the self-propagating combustion synthesis (SPCS) method. Powder characterization was performed by XRD, ICP-AES, FTIR and SEM. # 2000 Elsevier Science Ltd. All rights reserved.

متن کامل

Bioceramics in endodontics – a review

Bioceramics are materials which include Alumina, Zirconia, Bioactive glass, Glass ceramics, Hydroxyapatite, resorbable Calcium phosphates, among others. They have been used in dentistry for filling up bony defects, root repair materials, apical fill materials, perforation sealing, as endodontic sealers and as aids in regeneration. They have certain advantages like biocompatibility, non toxicity...

متن کامل

Preparation of porous tri-calcium phosphate ceramic scaffold for bone tissue engineering

Calcium Phosphate ceramic has been widely used in bone tissue engineering due to its excellent biocompatibility and biodegradability. However, low mechanical properties and biodegradability limit their potential applications. In this project, hydroxyapatite (HA) and calcium phosphate bioglass were used to produce porous tri-calcium phosphate (TCP) bioceramic scaffolds. It was found that porous ...

متن کامل

A Study of Bone-Like Apatite Formation on β-TCP/PLLA Scaffold in Static and Dynamic Simulated Body Fluid

The ability of apatite to form on the surface of biomaterials in simulated body fluid (SBF) has been widely used to predict the bone-bonding ability of bioceramic and bioceramic/polymer composites in vivo. Porous β-tricalcium phosphate/poly(L-lactic acid) (β-TCP/PLLA) composite scaffold was synthesized by new method. The ability of inducing calcium phosphate (Ca-P) formation was compared in sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Colloids and surfaces. B, Biointerfaces

دوره 111  شماره 

صفحات  -

تاریخ انتشار 2013