Functional Radial Basis Function Networks (FRBFN)
نویسندگان
چکیده
There has been recently a lot of interest for functional data analysis [1] and extensions of well-known methods to functional inputs (clustering algorithm [2], non-parametric models [3], MLP [4]). The main motivation of these methods is to benefit from the enforced inner structure of the data. This paper presents how functional data can be used with RBFN, and how the inner structure of the former can help designing the network.
منابع مشابه
FUZZY RELEVANCE FEEDBACK IN CONTENT−BASED IMAGE RETRIEVAL SYSTEMS USING RADIAL BASIS FUNCTION NETWORK (FriAmOR7)
This paper presents a new framework called fuzzy relevance feedback in interactive content−based image retrieval (CBIR) systems based on soft−decision. An efficient learning approach is proposed using a fuzzy radial basis function network (FRBFN). Conventional binary labeling schemes require a crisp decision to be made on the relevance of the retrieved images. However, user interpretation varie...
متن کاملAn Inverse RBF Neural Network for Plasma Arc Welding Control
The primary issue of this research is to create an inverse neural network model for automatic welding parameter control. In this research, there have a new model of inverse radius basis function neural network (IRBFN) proposed, which is an indirect approach. The development processes first build a feed-forward radius basis function neural network (FRBFN), which learns the influence of the input...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملLong-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks
Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...
متن کاملImage Classification based on Color and Texture features using FRBFN network with Artificial Bee Colony Optimization Algorithm
With advances in information technology, there is an explosive growth of image databases which demands effective and efficient tools that allow users to search through this large collection. Conventionally, the way of searching the collections of digital image database is by matching keywords with image caption, descriptions and labels. Keyword based searching method provides very high computat...
متن کامل