Chemical-Functional Diversity in Cell-Penetrating Peptides
نویسندگان
چکیده
Cell-penetrating peptides (CPPs) are a promising tool to overcome cell membrane barriers. They have already been successfully applied as carriers for several problematic cargoes, like e.g. plasmid DNA and (si)RNA, opening doors for new therapeutics. Although several hundreds of CPPs are already described in the literature, only a few commercial applications of CPPs are currently available. Cellular uptake studies of these peptides suffer from inconsistencies in used techniques and other experimental conditions, leading to uncertainties about their uptake mechanisms and structural properties. To clarify the structural characteristics influencing the cell-penetrating properties of peptides, the chemical-functional space of peptides, already investigated for cellular uptake, was explored. For 186 peptides, a new cell-penetrating (CP)-response was proposed, based upon the scattered quantitative results for cellular influx available in the literature. Principal component analysis (PCA) and a quantitative structure-property relationship study (QSPR), using chemo-molecular descriptors and our newly defined CP-response, learned that besides typical well-known properties of CPPs, i.e. positive charge and amphipathicity, the shape, structure complexity and the 3D-pattern of constituting atoms influence the cellular uptake capacity of peptides.
منابع مشابه
Cell penetrating and transytosing peptides: powerful strategies for oral insulin delivery
Insulin is essential for type 1 and advanced type 2 diabetes to maintain blood glucose levels and increase the patient’s longevity. Frequent subcutaneous insulin injections are usually associated with pain, local tissue necrosis, infection and nerve damage. Recently, a number of new delivery methods such as oral insulin delivery have been developed to overcome these limitations and increase pa...
متن کاملActivation of cell-penetrating peptides by disulfide bridge formation of truncated precursors.
A small library of oligoarginine peptides equipped with terminal cysteines was studied with respect to their cell-penetrating properties. The peptides themselves were inactive but gained the ability to enter cells upon extension of their sequence through disulfide bridge formation.
متن کاملSpatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides.
The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control.
متن کاملDesigned cell penetrating peptide dendrimers efficiently internalize cargo into cells.
Redesigning linear cell penetrating peptides (CPPs) into a multi-branched topology with short dipeptide branches gave cell penetrating peptide dendrimers (CPPDs) with higher cell penetration, lower toxicity and hemolysis and higher serum stability than linear CPPs. Their use is demonstrated by delivering a cytotoxic peptide and paclitaxel into cells.
متن کاملMonitoring the cytosolic entry of cell-penetrating peptides using a pH-sensitive fluorophore.
We report a simple, effective method to assess the cytosolic delivery efficiency and kinetics of cell-penetrating peptides using a pH-sensitive fluorescent probe, naphthofluorescein.
متن کامل