cc sd - 0 00 89 10 0 , v er si on 1 - 1 0 A ug 2 00 6 Density of periodic points , invariant measures and almost equicontinuous points of Cellular Automata

نویسنده

  • Pierre Tisseur
چکیده

Revisiting the notion of μ-almost equicontinuous cellular automata introduced by R. Gilman, we show that the sequence of image measures of a shift ergodic measure μ by iterations of a μ-almost equicontinuous cellular automata F , converges in Cesaro mean to an invariant measure μc. If the initial measure μ is a Bernouilli measure, we prove that the Cesaro mean limit measure μc is shift mixing. Therefore we also show that for any shift ergodic and F -invariant measure μ, the existence of μ-almost equicontinuous points implies that the set of periodic points is dense in the topological support S(μ) of the invariant measure μ. Finally we give a non trivial example of a couple (μ-equicontinuous cellular automata F , shift ergodic and F -invariant measure μ) which has no equicontinuous point in S(μ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 2 00 6 Density of periodic points , invariant measures and almost equicontinuous points of Cellular

Revisiting the notion of μ-almost equicontinuous cellular automata introduced by R. Gilman, we show that the sequence of image measures of a shift ergodic measure μ by iterations of a μ-almost equicontinuous cellular automata F , converges in Cesaro mean to an invariant measure μc. If the initial measure μ is a Bernouilli measure, we prove that the Cesaro mean limit measure μc is shift mixing. ...

متن کامل

Density of periodic points, invariant measures and almost equicontinuous points of Cellular Automata

Revisiting the notion of μ-almost equicontinuous cellular automata introduced by R. Gilman, we show that the sequence of image measures of a shift ergodic measure μ by iterations of such automata converges in Cesaro mean to an invariant measure μc. If the initial measure μ is a Bernouilli measure, we prove that the Cesaro mean limit measure μc is shift mixing. Therefore we also show that for an...

متن کامل

cc sd - 0 00 83 03 4 , v er si on 1 - 2 9 Ju n 20 06 On symmetric sandpiles ∗

A symmetric version of the well-known SPM model for sandpiles is introduced. We prove that the new model has fixed point dynamics. Although there might be several fixed points, a precise description of the fixed points is given. Moreover, we provide a simple closed formula for counting the number of fixed points originated by initial conditions made of a single column of grains.

متن کامل

cc sd - 0 00 00 57 7 ( v er si on 4 ) : 1 6 Ja n 20 04 Three - dimensional bubble clusters : shape , packing and growth - rate

We consider three-dimensional clusters of equal-volume bubbles packed around a central bubble and calculate their energy and optimal shape. We obtain the surface area and bubble pressures to improve on existing growth laws for three-dimensional bubble clusters. We discuss the possible number of bubbles that can be packed around a central one: the " kissing problem " , here adapted to deformable...

متن کامل

Delaunay Triangulations for Moving Points

This paper considers the problem of updating efficiently a Delaunay triangulation when vertices are moving under small perturbations. Its main contribution is a set of algorithms based on the concept of vertex tolerance. Experiment shows that it is able to outperform the naive rebuilding algorithm in certain conditions. For instance, when points, in two dimensions, are relocated by Lloyd’s iter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006