Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11.
نویسندگان
چکیده
Biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11 was isolated from coastal marine sediment of Paradeep Port, Odisha, East Coast, India, which resisted up to 1,000 ppm of cadmium (Cd) as cadmium chloride in aerobic conditions with a minimal inhibitory concentration of 1,250 ppm. Biomass and extracellular polymeric substances (EPS) secreted by the cells effectively removed 58.760 ± 10.62 and 29.544 ± 8.02 % of Cd, respectively. The integrated density of the biofilm-EPS observed under fluorescence microscope changed significantly (P ≤ 0.05) in the presence of 50, 250, 450, 650 and 850 ppm Cd. ATR-FTIR spectroscopy showed a peak at 2,365.09/cm in the presence of 50, 250, 450 and 650 ppm Cd which depicts the presence of sulphydryl group (-SH) within the EPS, whereas, a peak shift to 2,314.837/cm in the presence of 850 ppm Cd suggested the major role of this functional group in the binding with cadmium. On exposure to Cd at 100, 500 and 1,000 ppm, the expression profiles of cadmium resistance gene (czcABC) in the isolate showed an up-regulation of 3.52-, 17- and 24-fold, respectively. On the other hand, down-regulation was observed with variation in the optimum pH (6) and salinity (20 g l(-1)) level. Thus, the cadmium resistance gene expression increases on Cd stress up to the tolerance level, but an optimum pH and salinity are the crucial factors for proper functioning of cadmium resistance gene.
منابع مشابه
One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm
Objective(s): Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Algin...
متن کاملSynergistic Effect of Silver Nanoparticles and Streptomycin Antibiotic on the MexX Gene Expression of Pump Efflux System in Drug-Resistant Pseudomonas aeruginosa Strains
Introduction: Pseudomonas aeruginosa is one of the most important infectious agents in humans, which is difficult to control in hospitals due to its resistance to various antibiotics. Efflux pump systems play an important role in the drug resistance of this bacterium to a variety of antibiotics. This study aimed to determine the antimicrobial synergistic effect of silver nanoparticles and the a...
متن کاملDetection of Heavy Metals Resistance Genes and Effects of Iron Nanoparticles on the Gene Expression in Pseudomonas Aeruginosa Using Real-Time PCR
Background: Heavy metals enter the environment through industrial activities and contaminate natural ecosystems. Identification of heavy metal-resistant bacteria plays an important role in environmental pollution and ultimately cleansing it. Therefore, the aim of the present study was to isolate the resistant genes of Pseudomonas aeruginosa and the effects of nanoparticles on gene expression u...
متن کاملLow concentrations of local honey modulate ETA expression, and quorum sensing related virulence in drug-resistant Pseudomonas aeruginosa recovered from infected burn wounds
Objective(s): Honey’s ability to kill microorganisms and even eradication of chronic infections with drug-resistant pathogens has been documented by numerous studies. The present study is focused on the action of honey in its sub-inhibitory levels to impact on the pathogens coordinated behaviors rather than killing them. Materials and Methods:</strong...
متن کاملCHAPTER FOUR PROTEOME COMPARISON OF Pseudomonas aeruginosa PLANKTONIC, SURFACE INFLUENCED PLANKTONIC AND BIOFILM POPULATIONS BASED UPON COMPOSITE TWO-DIMENSIONAL ELECTROPHORESIS GELS
It has long been recognised that bacteria can switch from planktonic unicellular organisms to sessile multicellular communities known as biofilms (Costerton et al., 1987; 1995). The transition to surface-attached (biofilm) growth is known to result in diverse changes in gene expression, which causes the attaching cells to become phenotypically and metabolically distinct from their planktonic co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science and pollution research international
دوره 21 24 شماره
صفحات -
تاریخ انتشار 2014