Whisker Contact Detection of Rodents Based on Slow and Fast Mechanical Inputs
نویسندگان
چکیده
Rodents use their whiskers to locate nearby objects with an extreme precision. To perform such tasks, they need to detect whisker/object contacts with a high temporal accuracy. This contact detection is conveyed by classes of mechanoreceptors whose neural activity is sensitive to either slow or fast time varying mechanical stresses acting at the base of the whiskers. We developed a biomimetic approach to separate and characterize slow quasi-static and fast vibrational stress signals acting on a whisker base in realistic exploratory phases, using experiments on both real and artificial whiskers. Both slow and fast mechanical inputs are successfully captured using a mechanical model of the whisker. We present and discuss consequences of the whisking process in purely mechanical terms and hypothesize that free whisking in air sets a mechanical threshold for contact detection. The time resolution and robustness of the contact detection strategies based on either slow or fast stress signals are determined. Contact detection based on the vibrational signal is faster and more robust to exploratory conditions than the slow quasi-static component, although both slow/fast components allow localizing the object.
منابع مشابه
Effect of sensory deprivation and Locus Coeruleus (LC) electrical stimulation on the response properties of layer IV barrel cortex neurons in male rats
Introduction: Barrel cortex of rodents is responsible for sensory information processing from muzzle whiskers. Locus coeruleus (LC) as the main source of norepinephrine (NE) in the cortex, is effective on the sensory information processing. Methods: Rats were divided to 2 groups. One group underwent sensory deprivation (P4) and the other group served as control and did not undergo sensory d...
متن کاملWhisker encoding of mechanical events during active tactile exploration
Rats use their whiskers to extract a wealth of information about their immediate environment, such as the shape, position or texture of an object. The information is conveyed to mechanoreceptors located within the whisker follicle in the form of a sequence of whisker deflections induced by the whisker/object contact interaction. How the whiskers filter and shape the mechanical information and e...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملWhisker-Mediated Texture Discrimination
Our sense of touch provides information about nearby objects that can affect us in an immediate way. Texture, a central component of touch, is sensed quickly, even before an object is explored to measure its size, shape, or identity. To learn how contact with a surface produces a sensation of texture, many laboratories have examined the whisker system of rodents. Touch sensed through the whiske...
متن کاملSensory integration across space and in time for decision making in the somatosensory system of rodents.
Environment is represented in the brain by a neural code that is a result of the spatiotemporal pattern of incoming sensory information. Sensory neurons encode inputs across space and in time such that activity of a given cell inhibits the ability of near-simultaneously arriving sensory stimuli to excite the cell. At the behavioral level, consequences of such suppression are unknown. We investi...
متن کامل