Distinctive neurophysiological properties of embryonic trigeminal and geniculate neurons in culture.

نویسندگان

  • Arturas Grigaliunas
  • Robert M Bradley
  • Donald K MacCallum
  • Charlotte M Mistretta
چکیده

Neurons in trigeminal and geniculate ganglia extend neurites that share contiguous target tissue fields in the fungiform papillae and taste buds of the mammalian tongue and thereby have principal roles in lingual somatosensation and gustation. Although functional differentiation of these neurons is central to formation of lingual sensory circuits, there is little known about electrophysiological properties of developing trigeminal and geniculate ganglia or the extrinsic factors that might regulate neural development. We used whole cell recordings from embryonic day 16 rat ganglia, maintained in culture as explants for 3-10 days with neurotrophin support to characterize basic properties of trigeminal and geniculate neurons over time in vitro and in comparison to each other. Each ganglion was cultured with the neurotrophin that supports maximal neuron survival and that would be encountered by growing neurites at highest concentration in target fields. Resting membrane potential and time constant did not alter over days in culture, whereas membrane resistance decreased and capacitance increased in association with small increases in trigeminal and geniculate soma size. Small gradual differences in action potential properties were observed for both ganglion types, including an increase in threshold current to elicit an action potential and a decrease in duration and increase in rise and fall slopes so that action potentials became shorter and sharper with time in culture. Using a period of 5-8 days in culture when neural properties are generally stable, we compared trigeminal and geniculate ganglia and revealed major differences between these embryonic ganglia in passive membrane and action potential characteristics. Geniculate neurons had lower resting membrane potential and higher input resistance and smaller, shorter, and sharper action potentials with lower thresholds than trigeminal neurons. Whereas all trigeminal neurons produced a single action potential at threshold depolarization, 35% of geniculate neurons fired repetitively. Furthermore, all trigeminal neurons produced TTX-resistant action potentials, but geniculate action potentials were abolished in the presence of low concentrations of TTX. Both trigeminal and geniculate neurons had inflections on the falling phase of the action potential that were reduced in the presence of various pharmacological blockers of calcium channel activation. Use of nifedipine, omega-conotoxin-MVIIA and GVIA, and omega-agatoxin-TK indicated that currents through L-, N-, and P/Q- type calcium channels participate in the action potential inflection in embryonic trigeminal and geniculate neurons. The data on passive membrane, action potential, and ion channel characteristics demonstrate clear differences between trigeminal and geniculate ganglion neurons at an embryonic stage when target tissues are innervated but receptor organs have not developed or are still immature. Therefore these electrophysiological distinctions between embryonic ganglia are present before neural activity from differentiated receptive fields can influence functional phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Glycoconjugate Changes in the Embryonic Trigeminal Nucleus in Balb/C Mouse by Lectin Histochemistry

Purpose: Determination of changes of glycoconjugates, which have special terminal sugars, in embryonic developmental processes of brain stem and trigeminal nucleus in Balb/C mouse. Materials and Methods: In this study mice embryos between 10-17 embryonic days were used. They were fixed according to ordinary laboratory procedures. The specimens were embedded in paraffin and serial sections with...

متن کامل

The response of chick sensory neurons to brain-derived neurotrophic factor.

To determine the spectrum of activity of brain-derived neurotrophic factor (BDNF) among first-order sensory neurons, explants of the nine distinct populations of sensory neurons from embryonic chicks of 3-14 d incubation (E3-E14) were grown in collagen gels with and without BDNF in the culture medium. The explants responded to BDNF with profuse neurite outgrowth and comprised those in which neu...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Microfluidics co-culture systems for studying tooth innervation

Innervation plays a key role in the development and homeostasis of organs and tissues of the orofacial complex. Among these structures, teeth are peculiar organs as they are not innervated until later stages of development. Furthermore, the implication of neurons in tooth initiation, morphogenesis and differentiation is still controversial. Co-cultures constitute a valuable method to investigat...

متن کامل

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 2002