Enumerating Vertices of $0/1$-Polyhedra associated with $0/1$-Totally Unimodular Matrices
نویسندگان
چکیده
We give an incremental polynomial time algorithm for enumerating the vertices of any polyhedron P(A, 1 ̄ ) = {x ∈ R | Ax ≥ 1 ̄ , x ≥ 0 ̄ }, when A is a totally unimodular matrix. Our algorithm is based on decomposing the hypergraph transversal problem for unimodular hypergraphs using Seymour’s decomposition of totally unimodular matrices, and may be of independent interest.
منابع مشابه
On the Shadow Simplex Method for Curved Polyhedra
We study the simplex method over polyhedra satisfying certain “discrete curvature” lower bounds, which enforce that the boundary always meets vertices at sharp angles. Motivated by linear programs with totally unimodular constraint matrices, recent results of Bonifas et al. (Discrete Comput. Geom. 52(1):102–115, 2014), Brunsch and Röglin (Automata, languages, and programming. Part I, pp. 279–29...
متن کاملOn the discrepancy of strongly unimodular matrices
A (0, 1) matrix A is strongly unimodular if A is totally unimodular and every matrix obtained from A by setting a nonzero entry to 0 is also totally unimodular. Here we consider the linear discrepancy of strongly unimodular matrices. It was proved by Lováz, et.al. [5] that for any matrix A, lindisc(A) ≤ herdisc(A). (1) When A is the incidence matrix of a set-system, a stronger inequality holds:...
متن کاملA Generalization of Tutte's Characterization of Totally Unimodular Matrices
An integral square matrix A is called principally unimodular (PU if every nonsingular principal submatrix is unimodular (that is, has determinant \1). Principal unimodularity was originally studied with regard to skew-symmetric matrices; see [2, 4, 5]; here we consider symmetric matrices. Our main theorem is a generalization of Tutte's excluded minor characterization of totally unimodular matri...
متن کاملA characterization of unimodular orientations of simple graphs
Let G be a simple graph, and consider an orientation of the edges of G. Where V is the vertex-set of G, let A = (A,, : u, w E V) be the integral antisymmetric (0, +_ 1)-matrix such that A,,, = 1 if and only if VW is an edge of G directed from u to w. The orientation of G is said to be unimodular if for every WC V the determinant of the submatrix (A,, : u, w E W) is 0 or 1. For example, it is kn...
متن کاملPrincipally Unimodular Skew-Symmetric Matrices
A square matrix is principally unimodular if every principal submatrix has determinant 0 or 1. Let A be a symmetric (0; 1)-matrix, with a zero diagonal. A PU-orientation of A is a skew-symmetric signing of A that is PU. If A 0 is a PU-orientation of A, then, by a certain decomposition of A, we can construct every PU-orientation of A from A 0. This construction is based on the fact that the PU-o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.03914 شماره
صفحات -
تاریخ انتشار 2017