Planetesimal formation by an axisymmetric radial bump of the column density of the gas in a protoplanetary disk
نویسندگان
چکیده
We investigate the effect of a radial pressure bump in a protoplanetary disk on planetesimal formation. We performed the two-dimensional numerical simulation of the dynamical interaction of solid particles and gas with an initially defined pressure bump under the assumption of axisymmetry. The aim of this work is to elucidate the effects of the stellar vertical gravity that were omitted in a previous study. Our results are very different from the previous study, which omitted the vertical gravity. Because dust particles settle toward the midplane because of the vertical gravity to form a thin dust layer, the regions outside of the dust layer are scarcely affected by the back-reaction of the dust. Hence, the gas column density keeps its initial profile with a bump, and dust particles migrate toward the bump. In addition, the turbulence due to the Kelvin–Helmholtz instability caused by the difference of the azimuthal velocities between the inside and outside of the dust layer is suppressed where the radial pressure gradient is reduced by the pressure bump. The dust settling proceeds further where the turbulence is weak, and a number of dust clumps are formed. The dust density in some clumps exceeds the Roche density. Planetesimals are considered to be formed from these clumps owing to the self-gravity.
منابع مشابه
Critical Protoplanetary Core Masses in Protoplanetary Disks and the Formation of Short–period Giant Planets
We study a solid protoplanetary core undergoing radial migration in a protoplanetary disk. We consider cores in the mass range ∼ 1 − 10 M⊕ embedded in a gaseous protoplanetary disk at different radial locations. We suppose the core luminosity is generated as a result of planetesimal accretion and calculate the structure of the gaseous envelope assuming hydrostatic and thermal equilibrium. This ...
متن کاملStreaming Instabilities in Protoplanetary Disks
Interpenetrating streams of solids and gas in a Keplerian disk produce a local, linear instability. The two components mutually interact via aerodynamic drag, which generates radial drift and triggers unstable modes. The secular instability does not require self-gravity, yet it generates growing particle density perturbations that could seed planetesimal formation. Growth rates are slower than ...
متن کاملFormation of giant planets around stars with various masses
We examine the predictions of the core accretion gas capture model concerning the efficiency of planet formation around stars with various masses. First, we follow the evolution of gas and solids from the moment when all solids are in the form of small grains to the stage when most of them are in the form of planetesimals. We show that the surface density of the planetesimal swarm tends to be h...
متن کاملParticle Clumping and Planetesimal Formation Depend Strongly on Metallicity
We present three-dimensional numerical simulations of particle clumping and planetesimal formation in protoplanetary disks with varying amounts of solid material. As centimeter-size pebbles settle to the midplane, turbulence develops through vertical shearing and streaming instabilities. We find that when the pebbleto-gas column density ratio is 0.01, corresponding roughly to solar metallicity,...
متن کاملParticle Clumping in Protoplanetary Disks Depends Strongly on Metallicity
We present three-dimensional numerical simulations of particle clumping and planetesimal formation in protoplanetary disks with varying amounts of solid material. As centimeter-size pebbles settle to the midplane, turbulence develops through vertical shearing and streaming instabilities. We find that when the pebbleto-gas column density ratio is 0.01, corresponding roughly to solar metallicity,...
متن کامل