Extraordinarily slow binding of guanosine to the Tetrahymena group I ribozyme: implications for RNA preorganization and function.
نویسندگان
چکیده
The Tetrahymena ribozyme derived from the self-splicing group I intron binds a 5'-splice site analog (S) and guanosine (G), catalyzing their conversion to a 5'-exon analog (P) and GA. Herein, we show that binding of guanosine is exceptionally slow, limiting the reaction at near neutral pH. Our results implicate a conformational rearrangement on guanosine binding, likely because the binding site is not prearranged in the absence of ligand. The fast accommodation of guanosine (10(2) to 10(3) x s(-1)) and prior structural data suggest local rather than global rearrangements, raising the possibility that folding of this and perhaps other large RNAs is not fully cooperative. Guanosine binding is accelerated by addition of residues that form helices, referred to as P9.0 and P10, immediately 5' and 3' to the guanosine. These rate enhancements provide evidence for binding intermediates that have the adjacent helices formed before accommodation of guanosine into its binding site. Because the ability to form the P9.0 and P10 helices distinguishes the guanosine at the correct 3'-splice site from other guanosine residues, the faster binding of the correct guanosine can enhance specificity of 3'-splice site selection. Thus, paradoxically, the absence of a preformed binding site and the resulting slow guanosine binding can contribute to splicing specificity by providing an opportunity for the adjacent helices to increase the rate of binding of the guanosine specifying the 3'-splice site.
منابع مشابه
A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction.
Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very s...
متن کاملDifferential Assembly of Catalytic Interactions within the Conserved Active Sites of Two Ribozymes
Molecular recognition is central to biology and a critical aspect of RNA function. Yet structured RNAs typically lack the preorganization needed for strong binding and precise positioning. A striking example is the group I ribozyme from Tetrahymena, which binds its guanosine substrate (G) orders of magnitude slower than diffusion. Binding of G is also thermodynamically coupled to binding of the...
متن کاملA rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site.
Protein enzymes appear to use extensive packing and hydrogen bonding interactions to precisely position catalytic groups within active sites. Because of their inherent backbone flexibility and limited side chain repertoire, RNA enzymes face additional challenges relative to proteins in precisely positioning substrates and catalytic groups. Here, we use the group I ribozyme to probe the existenc...
متن کاملThe P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis.
Phylogenetic comparisons and site-directed mutagenesis indicate that group I introns are composed of a catalytic core that is universally conserved and peripheral elements that are conserved only within intron subclasses. Despite this low overall conservation, peripheral elements are essential for efficient splicing of their parent introns. We have undertaken an in-depth structure-function anal...
متن کاملStructure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
The Tetrahymena intron is an RNA catalyst, or ribozyme. As part of its self-splicing reaction, this ribozyme catalyzes phosphoryl transfer between guanosine and a substrate RNA strand. Here we report the refined crystal structure of an active Tetrahymena ribozyme in the absence of its RNA substrate at 3.8 A resolution. The 3'-terminal guanosine (omegaG), which serves as the attacking group for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 5 شماره
صفحات -
تاریخ انتشار 2003