An Elemental Erdős–kac Theorem for Algebraic Number Fields

نویسنده

  • PAUL POLLACK
چکیده

Abstract. Fix a number field K. For each nonzero α ∈ ZK , let ν(α) denote the number of distinct, nonassociate irreducible divisors of α. We show that ν(α) is normally distributed with mean proportional to (log log |N(α)|)D and standard deviation proportional to (log log |N(α)|)D−1/2. Here D, as well as the constants of proportionality, depend only on the class group of K. For example, for each fixed real λ, the proportion of α ∈ Z[ √ −5] with ν(α) ≤ 1 8 (log logN(α)) + λ

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Erdős-kac Theorem for Polynomials of Several Variables

We prove two versions of the Erdős-Kac type theorem for polynomials of several variables on some varieties arising from translation and affine linear transformation.

متن کامل

Moderate and Large Deviations for Erdős-kac Theorem

as n → ∞. This is a deep extension of Hardy-Ramanujan Theorem (see [13]). In addition, the central limit theorem holds in a more general setting for additive functions. A formal treatment and proofs can be found in e.g. Durrett [7]. In terms of rate of convergence to the Gaussian distribution, i.e. Berry-Esseen bounds, Rényi and Turán [18] obtained the sharp rate of convergenceO(1/ √ log logn)....

متن کامل

An algebraic proof of the Erdős-Ko-Rado theorem for intersecting families of perfect matchings

In this paper we give a proof that the largest set of perfect matchings, in which any two contain a common edge, is the set of all perfect matchings that contain a fixed edge. This is a version of the famous Erdős-Ko-Rado theorem for perfect matchings. The proof given in this paper is algebraic, we first determine the least eigenvalue of the perfect matching derangement graph and use properties...

متن کامل

Non-Abelian Generalizations of the Erdős-Kac Theorem

Let ω(n) and Ω(n) denote the number of prime factors of n, counted without multiplicity and with multiplicity, respectively. In 1917, Hardy and Ramanujan [7] proved that the normal order of ω(n) and Ω(n) is log log n. This means that given any > 0, the number of n ≤ x failing to satisfy the inequality | f (n) − log log n| < log log n, with f = ω or Ω, is o(x) as x → ∞. Subsequently, in 1934, Tu...

متن کامل

A Differential Chevalley Theorem

We prove a differential analog of a theorem of Chevalley on extending homomorphisms for rings with commuting derivations, generalizing a theorem of Kac. As a corollary, we establish that, under suitable hypotheses, the image of a differential scheme under a finite morphism is a constructible set. We also obtain a new algebraic characterization of differentially closed fields. We show that simil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016