Measuring Dynamics and Interactions of Colloidal Particles with Digital Holographic Microscopy

نویسندگان

  • Jerome Fung
  • David Kaz
  • Steven Ahn
  • Ryan McGorty
  • Vinothan N. Manoharan
چکیده

We investigate how colloidal particles self-assemble in confined and nonequilibrium systems, including particles trapped at liquid-liquid interfaces (e.g. emulsion droplets) and inside spherical containers. Although common in industrial formulations and fundamental condensed matter studies, these systems remain poorly understood, primarily because no existing experimental probes, including confocal microscopy, can yield real-space data with sufficiently fast acquisition times to resolve 3D dynamics. We use a powerful interferometric technique, Digital Holographic Microscopy (DHM), in concert with particle synthesis and algorithm development to overcome these limitations. Preliminary data show that the technique is capable of tracking several micrometer-sized colloidal particles with 30 nm spatial precision in all three dimensions on millisecond time scales. DHM may be able to yield the most complete physical picture to date of dynamics, interactions, and assembly in colloidal suspensions. OCIS codes: 090.1995 Digital holography ; 350.4990 Particles

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Localization of weak scatterers in digital holographic microscopy using Rayleigh-Sommerfeld back-propagation

The Rayleigh-Sommerfeld back-propagation method is a fast and highly flexible volume reconstruction scheme for digital holographic microscopy. We present a new method for 3D localization of weakly scattering objects using this technique. A well-known aspect of classical optics (the Gouy phase shift) can be used to discriminate between objects lying on either side of the holographic image plane....

متن کامل

Characterizing and tracking single colloidal particles with video holographic microscopy.

We use digital holographic microscopy and Mie scattering theory to simultaneously characterize and track individual colloidal particles. Each holographic snapshot provides enough information to measure a colloidal sphere's radius and refractive index to within 1%, and simultaneously to measure its three-dimensional position with nanometer in-plane precision and 10 nanometer axial resolution.

متن کامل

Robustness of holographic video microscopy against defects in illumination

We numerically investigate how defects in the illumination system of a holographic microscope, in particular divergence and tilt of the illuminating laser beam, affect the measured properties of colloidal spherical particles. We show that under typical experimental conditions divergence and tilt of the laser beam do not affect the measured parameters significantly, confirming the robustness of ...

متن کامل

Measuring the deposited energy from a non-ionizing laser beam in water by digital holographic interferometry

Digital Holographic interferometry is a powerful and widely used optical technique for accurate measurement of variations in physical quantities such as density, refractive index, and etc. In this study, an experimental digital holographic interferometry setup was designed and used to measure the amount of energy changes induced by absorption of radiation from a non-ionizing infrared laser beam...

متن کامل

Line Optical Tweezers Instrument for Measuring Nanoscale Interactions and Kinetics

We describe an optical tweezers instrument for measuring short-ranged colloidal interactions, based on a combination of a continuous wave line optical tweezers, high speed video microscopy, and laser illumination. Our implementation can measure the separation of two nearly contacting microspheres to better than 4 nm at rates in excess of 10 kHz. A simple image analysis algorithm allows us to se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007