Clinically Feasible Microstructural MRI to Quantify Cervical Spinal Cord Tissue Injury Using DTI, MT, and T2*-Weighted Imaging: Assessment of Normative Data and Reliability.

نویسندگان

  • A R Martin
  • B De Leener
  • J Cohen-Adad
  • D W Cadotte
  • S Kalsi-Ryan
  • S F Lange
  • L Tetreault
  • A Nouri
  • A Crawley
  • D J Mikulis
  • H Ginsberg
  • M G Fehlings
چکیده

BACKGROUND AND PURPOSE DTI, magnetization transfer, T2*-weighted imaging, and cross-sectional area can quantify aspects of spinal cord microstructure. However, clinical adoption remains elusive due to complex acquisitions, cumbersome analysis, limited reliability, and wide ranges of normal values. We propose a simple multiparametric protocol with automated analysis and report normative data, analysis of confounding variables, and reliability. MATERIALS AND METHODS Forty healthy subjects underwent T2WI, DTI, magnetization transfer, and T2*WI at 3T in <35 minutes using standard hardware and pulse sequences. Cross-sectional area, fractional anisotropy, magnetization transfer ratio, and T2*WI WM/GM signal intensity ratio were calculated. Relationships between MR imaging metrics and age, sex, height, weight, cervical cord length, and rostrocaudal level were analyzed. Test-retest coefficient of variation measured reliability in 24 DTI, 17 magnetization transfer, and 16 T2*WI datasets. DTI with and without cardiac triggering was compared in 10 subjects. RESULTS T2*WI WM/GM showed lower intersubject coefficient of variation (3.5%) compared with magnetization transfer ratio (5.8%), fractional anisotropy (6.0%), and cross-sectional area (12.2%). Linear correction of cross-sectional area with cervical cord length, fractional anisotropy with age, and magnetization transfer ratio with age and height led to decreased coefficients of variation (4.8%, 5.4%, and 10.2%, respectively). Acceptable reliability was achieved for all metrics/levels (test-retest coefficient of variation < 5%), with T2*WI WM/GM comparing favorably with fractional anisotropy and magnetization transfer ratio. DTI with and without cardiac triggering showed no significant differences for fractional anisotropy and test-retest coefficient of variation. CONCLUSIONS Reliable multiparametric assessment of spinal cord microstructure is possible by using clinically suitable methods. These results establish normalization procedures and pave the way for clinical studies, with the potential for improving diagnostics, objectively monitoring disease progression, and predicting outcomes in spinal pathologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

POST-TRAUMATIC CHRONIC SPINAL CORD INJURY: ASSESSMENT WITH MRI

The initial experience concerning the use of magnetic resonance imaging in 94 patients who had sustained chronic cord injury showed its specific advantages over traditional imaging modalities. A variety of 84 cord abnormalities were identified including myelomalacia in 47%, cord cysts in 37%, focal atrophy in 11 % and cord transection in 5%. Canal stenosis was seen in twenty-five patients, ...

متن کامل

Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

Introduction: There is many ways to assessing the electrical conductivity anisotropyof a tumor. Applying the values of tissue electrical conductivity anisotropyis crucial in numerical modeling of the electric and thermal field distribution in electroporationtreatments. This study aims to calculate the tissues electrical conductivityanisotropy in patients with sarcoma tumors using diffusion tens...

متن کامل

Diffusion tensor imaging of the spinal cord: insights from animal and human studies.

Diffusion tensor imaging (DTI) provides a measure of the directional diffusion of water molecules in tissues. The measurement of DTI indexes within the spinal cord provides a quantitative assessment of neural damage in various spinal cord pathologies. DTI studies in animal models of spinal cord injury indicate that DTI is a reliable imaging technique with important histological and functional c...

متن کامل

I-45: Advance MRI Sequences in Pelvic Endometriosis

Background: To assess MRI in diagnosing endometriotic lesions, emphasizing T2*weighted imaging efficacy. Materials and Methods: This prospective study of 48 females (22-38 years, average 29.6) clinically suspected of endometriosis from September 2009 to April 2012. MRI was performed with a 1.5 T imager (Siemens) with a body array coil. T1, T2 and T2* weighted (2D-FLASH) sequences were obtained ...

متن کامل

Quantification of diffusivities of the human cervical spinal cord using a 2D single-shot interleaved multisection inner volume diffusion-weighted echo-planar imaging technique.

BACKGROUND AND PURPOSE DTI is a highly sensitive technique, which can detect pathology not otherwise noted with conventional imaging methods. This paper provides the atlas of reliable normative in vivo DTI parameters in the cervical spinal cord and its potential applications toward quantifying pathology. MATERIALS AND METHODS In our study, we created a reference of normal diffusivities of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 38 6  شماره 

صفحات  -

تاریخ انتشار 2017