An Adaptive H-refinement Finite Element Method for Parabolic Differential Systems in Three Space Dimensions
نویسنده
چکیده
I describe an adaptive h-reenement method for solving systems of parabolic partial diierential equations in three space dimensions on hexahedral grids. These grids typically have irregular (hanging) nodes. Solutions are calculated using Galerkin's method with a piecewise trilinear basis in space and a BDF code in time. New a posteriori error indicators based on interpolation error estimates for irregular grids are used to control reenement and coarsening. A more eecient algorithm for assembling banded portions of the Jacobian is introduced. A simple strategy for dealing with storage limitations by limiting the level of reenement is developed. Computational results demonstrate the eeectiveness of the adaptive method on linear and nonlinear problems.
منابع مشابه
An Adaptive H-refinement Finite Element Method for Reaction-diffusion Systems in Three Space Dimensions
I describe an adaptive h-reenement method for solving reaction-diiusion systems in three space dimensions on hexahedral grids. These grids typically have irregular (hanging) nodes. Solutions are calculated using Galerkin's method with a piecewise trilinear basis in space and a BDF code in time. New a posteriori error indicators based on interpolation error estimates for irregular grids are used...
متن کاملSolution Adapted Mesh Refinement and Sensitivity Analysis for Parabolic Partial Differential Equation Systems
We have developed a structured adaptive mesh refinement (SAMR) method for parabolic partial differential equation (PDE) systems. Solutions are calculated using the finite-difference or finite-volume method in space and backward differentiation formula (BDF) integration in time. The combination of SAMR in space and BDF in time is designed for problems where the fine-scale profile of sharp fronts...
متن کاملAdaptive Finite Element Methods For Optimal Control Of Second Order Hyperbolic Equations
In this paper we consider a posteriori error estimates for space-time finite element discretizations for optimal control of hyperbolic partial differential equations of second order. It is an extension of Meidner & Vexler (2007), where optimal control problems of parabolic equations are analyzed. The state equation is formulated as a first order system in time and a posteriori error estimates a...
متن کاملComparison of different numerical methods for calculating stress intensity factors in analysis of fractured structures
In this research, an efficient Galerkin Finite Volume Method (GFVM) along with the h–refinement adaptive process and post–processing error estimation analysis is presented for fracture analysis. The adaptive strategy is used to produce more accurate solution with the least computational cost. To investigate the accuracy and efficiency of the developed model, the GFVM is compared with two versio...
متن کاملSpectral element method in time for rapidly actuated systems
In this paper, the spectral element (SE) method is applied in time to find the entire time-periodic or transient solution of time-dependent differential equations. The time-periodic solution is computed by enforcing periodicity of the element set. Of particular interest are periodic forcing functions possessing high frequency content. To maintain the spectral accuracy for such forcing functions...
متن کامل