Driving Cell Seeding Using Surface Acoustic Wave Fluid Actuation

نویسندگان

  • Haiyan Li
  • James R. Friend
  • Leslie Y. Yeo
چکیده

In this paper, we investigate the ability to drive fluid streaming via a surface acoustic wave (SAW) into a porous bioscaffold structure, and to exploit this effect to deliver fluorescent particles/yeast cells into the scaffold as a potential rapid and efficient method for cell seeding in tissue engineering. The results demonstrate that the seeding process takes approximately 10 seconds, much shorter than that if the cell suspension were to perfuse through the scaffold under the effects of gravity alone (approximately 30 mins). By increasing the input power, both the velocity of the fluid flow and the particle seeding efficiency can be enhanced. At 560 mW, fluid velocities of the order 10 mm/s were achieved; in this case, the particle/yeast seeding efficiency is around 92%. In addition to rapid seeding, the SAW streaminginduced perfusion is observed to significantly improve the uniformity of the scaffold cell distribution due to greater penetration into the scaffold. Finally, we verify using a methylene violet staining procedure that 80% of the yeast cells seeded by the SAW method within the scaffold remained viable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet.

Ultrafast particle and cell concentration is essential to the success of subsequent analytical procedures and the development of miniaturized biological and chemical sensors. Here, surface acoustic wave (SAW) devices were used to excite a MHz-order acoustic wave that propagates into a microlitre droplet to drive spatial concentration and separation of two different sized suspended microparticle...

متن کامل

Effect of surface acoustic waves on the viability, proliferation and differentiation of primary osteoblast-like cells.

Surface acoustic waves (SAWs) have been used as a rapid and efficient technique for driving microparticles into a three-dimensional scaffold matrix, raising the possibility that SAW may be effective in seeding live cells into scaffolds, that is, if the cells were able to survive the infusion process. Primary osteoblast-like cells were used to specifically address this issue: To investigate the ...

متن کامل

The dynamics of surface acoustic wave-driven scaffold cell seeding.

Flow visualization using fluorescent microparticles and cell viability investigations are carried out to examine the mechanisms by which cells are seeded into scaffolds driven by surface acoustic waves. The former consists of observing both the external flow prior to the entry of the suspension into the scaffold and the internal flow within the scaffold pores. The latter involves micro-CT (comp...

متن کامل

Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber

In this article, we demonstrate a novel microfluidic flow chamber driven by surface acoustic waves. Our device is a closed loop channel with an integrated acoustic micropump without external fluidic connections that allows for the investigation of small fluid samples in a continuous flow. The fabrication of the channels is particularly simple and uses standard milling and PDMS molding. The micr...

متن کامل

Flat Fluidics: Programmable On-chip Networks for Biological and Chemical Applications

Surface acoustic waves are used to actuate and process smallest amounts of fluids on the planar surface of a piezoelectric chip. Chemical modification of the chip surface is employed to create virtual wells and tubes to confine the liquids. Lithographically modulated wetting properties of the surface define a fluidic network, in analogy to the wiring of an electronic circuit. Acoustic radiation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007