Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development

نویسندگان

  • Fabien Mounet
  • Annick Moing
  • Mariusz Kowalczyk
  • Johannes Rohrmann
  • Johann Petit
  • Virginie Garcia
  • Mickaël Maucourt
  • Kentaro Yano
  • Catherine Deborde
  • Koh Aoki
  • Hélène Bergès
  • Antonio Granell
  • Alisdair R. Fernie
  • Catherine Bellini
  • Christophe Rothan
  • Martine Lemaire-Chamley
چکیده

The PIN-FORMED (PIN) auxin efflux transport protein family has been well characterized in the model plant Arabidopsis thaliana, where these proteins are crucial for auxin regulation of various aspects of plant development. Recent evidence indicates that PIN proteins may play a role in fruit set and early fruit development in tomato (Solanum lycopersicum), but functional analyses of PIN-silenced plants failed to corroborate this hypothesis. Here it is demonstrated that silencing specifically the tomato SlPIN4 gene, which is predominantly expressed in tomato flower bud and young developing fruit, leads to parthenocarpic fruits due to precocious fruit development before fertilization. This phenotype was associated with only slight modifications of auxin homeostasis at early stages of flower bud development and with minor alterations of ARF and Aux/IAA gene expression. However, microarray transcriptome analysis and large-scale quantitative RT-PCR profiling of transcription factors in developing flower bud and fruit highlighted differentially expressed regulatory genes, which are potential targets for auxin control of fruit set and development in tomato. In conclusion, this work provides clear evidence that the tomato PIN protein SlPIN4 plays a major role in auxin regulation of tomato fruit set, possibly by preventing precocious fruit development in the absence of pollination, and further gives new insights into the target genes involved in fruit set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Paralogous Genes Encoding Auxin Efflux Carrier Differentially Expressed in Bitter Gourd (Momordica charantia)

The phytohormone auxin regulates various developmental programs in plants, including cell growth, cell division and cell differentiation. The auxin efflux carriers are essential for the auxin transport. To show an involvement of auxin transporters in the coordination of fruit development in bitter gourd, a juicy fruit, we isolated novel cDNAs (referred as McPIN) encoding putative auxin efflux c...

متن کامل

Under-expression of the Auxin Response Factor Sl-ARF4 improves postharvest behavior of tomato fruits.

Auxin is one of the most prominent phytohormones regulating many aspects of fleshy fruit development including fruit set, fruit size through the control of cell division and cell expansion, and fruit ripening. To shed light on the role of auxin fruit ripening, we have previously shown that Sl-ARF4 is a major player in mediating the auxin control of sugar metabolism in tomato fruit (cv MicroTom)...

متن کامل

Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato.

The phytohormone auxin is known to regulate several aspects of plant development, and Aux/IAA transcription factors play a pivotal role in auxin signaling. To extend our understanding of the multiple functions of Aux/IAAs further, the present study describes the functional characterization of Sl-IAA27, a member of the tomato Aux/IAA gene family. Sl-IAA27 displays a distinct behavior compared wi...

متن کامل

Transcriptome Profiling Reveals the Regulatory Mechanism Underlying Pollination Dependent and Parthenocarpic Fruit Set Mainly Mediated by Auxin and Gibberellin

BACKGROUND Fruit set is a key process for crop production in tomato which occurs after successful pollination and fertilization naturally. However, parthenocarpic fruit development can be uncoupled from fertilization triggered by exogenous auxin or gibberellins (GAs). Global transcriptome knowledge during fruit initiation would help to characterize the molecular mechanisms by which these two ho...

متن کامل

Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato

Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2012