Prospect of a stanniocalcin endocrine/paracrine system in mammals.
نویسندگان
چکیده
Stanniocalcin (STC) is a calcium- and phosphate-regulating hormone produced in bony fish by the corpuscles of Stannius, which are located close to the kidney. It is a major antihypercalcemic hormone in fish. As the corpuscles of Stannius are absent, and antihypercalcemic hormones are basically not necessary, in mammals, the discovery of a mammalian homolog, STC1, was surprising and intriguing. STC1 displays a relatively high amino acid sequence identity (approximately 50%) with fish STC. In contrast to fish STC, STC1 is expressed in many tissues, including kidney. More recently, a human gene encoding the second stanniocalcin-like protein, STC2, was identified. STC2 has a lower identity (approximately 35%) with STC1 and fish STC. Similar to STC1, STC2 is also expressed in a variety of tissues. Research into the functions of STCs in mammals is still at an early stage, and the ultimate physiological and pathological roles of STCs have not yet been established. A few studies indicate that STC1, similar to fish STC, stimulates phosphate absorption in the kidney and intestine, but the function of STC2 is still unknown. However, several interesting findings have been reported on their cellular localization, gene structure, and expression in different physiological and pathological conditions, which will be clues in elucidating the functions of STCs in mammals. STC1 expression is enhanced by hypertonicity in a kidney cell line or by ischemic injuries and neural differentiation in the brain. STC1 expression in the ovary is also enhanced during pregnancy and lactation. Calcitriol upregulates STC1 and downregulates STC2 expression in the kidney. Interestingly, STC1 and STC2 are expressed in many tumor cell lines, and the expression of STC2 is enhanced by estradiol in breast cancer cells. STC2 is also expressed in pancreatic islets. These results suggest that the biological repertoires of STCs in mammals will be considerably larger than in fish and may not be limited to mineral metabolism. This brief review describes recent progress in mammalian STC research.
منابع مشابه
The distribution of stanniocalcin 1 protein in fetal mouse tissues suggests a role in bone and muscle development.
We previously isolated a mammalian gene STC1 that encodes a glycoprotein related to stanniocalcin (STC), a fish hormone that plays a major role in calcium homeostasis. However, the mammalian STC1 gene is expressed in a variety of adult tissues in contrast to fish where STC is expressed only in one unique gland, the corpuscles of Stannius. This suggested that STC1 may have wider autocrine/paracr...
متن کاملIdentification of a stanniocalcin paralog, stanniocalcin-2, in fish and the paracrine actions of stanniocalcin-2 in the mammalian ovary.
Stanniocalcin is a glycoprotein hormone important in the maintenance of calcium and phosphate homeostasis in fish. Two related mammalian stanniocalcin genes, STC1 and STC2, were found to be expressed in various tissues as paracrine regulators. We have demonstrated the existence of a second stanniocalcin gene in fish, designated fish STC2, with only 30% identity to fish STC1. However, phylogenet...
متن کاملIntrauterine programming
In mammals, the intrauterine condition has an important role in the development of fetal physiological systems in later life. Suboptimal maternal environment can alter the regulatory pathways that determine the normal development of the fetus in utero, which in post-natal life may render the individual more susceptible to cardiovascular or metabolic adult-life diseases. Changes in the intrauter...
متن کاملStanniocalcin Has Deep Evolutionary Roots in Eukaryotes
Vertebrates have a large glycoprotein hormone, stanniocalcin, which originally was shown to inhibit calcium uptake from the environment in teleost fish gills. Later, humans, other mammals, and teleost fish were shown to have two forms of stanniocalcin (STC1 and STC2) that were widely distributed in many tissues. STC1 is associated with calcium and phosphate homeostasis and STC2 with phosphate, ...
متن کاملReview: The effect of insulin-like growth factor II in the regulation of tumour cell growth in vitro and tumourigenesis in vivo.
Insulin-like growth factor II (IGF-II) is a protein hormone that has been shown to exert several biological functions in mammals. IGF-II is produced mainly by the liver and to be systemically released to affect both the liver, in an autocrine and paracrine manner, as well as other tissues, through endocrine signaling. Nevertheless, it is also produced locally in various other tissues acting via...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 282 3 شماره
صفحات -
تاریخ انتشار 2002