Activity and Stability of the Tetramanganese Polyanion [Mn4(H2O)2(PW9O34)2]10- during Electrocatalytic Water Oxidation
نویسندگان
چکیده
In natural photosynthesis, the oxygen evolving center is a tetranuclear manganese cluster stabilized by amino acids, water molecules and counter ions. However, manganese complexes are rarely exhibiting catalytic activity in water oxidation conditions. This is also true for the family of water oxidation catalysts (WOCs) obtained from POM chemistry. We have studied the activity of the tetranuclear manganese POM [Mn4(H2O)2(PW9O34)2] (Mn4), the manganese analog of the well-studied [Co4(H2O)2(PW9O34)2] (Co4), one of the fastest and most interesting WOC candidates discovered up to date. Our electrocatalytic experiments indicate that Mn4 is indeed an active water oxidation catalysts, although unstable. It rapidly decomposes in water oxidation conditions. Bulk water electrocatalysis shows initial activities comparable to those of the cobalt counterpart, but in this case current density decreases very rapidly to become negligible just after 30 min, with the appearance of an inactive manganese oxide layer on the electrode.
منابع مشابه
A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals.
Traditional homogeneous water oxidation catalysts are plagued by instability under the reaction conditions. We report that the complex [Co4(H2O)2(PW9O34)2]10-, comprising a Co4O4 core stabilized by oxidatively resistant polytungstate ligands, is a hydrolytically and oxidatively stable homogeneous water oxidation catalyst that self-assembles in water from salts of earth-abundant elements (Co, W,...
متن کاملShining light on integrity of a tetracobalt-polyoxometalate water oxidation catalyst by X-ray spectroscopy before and after catalysis.
Modification of the Co-oxo cores of cobalt-polyoxometalate water oxidation catalysts is detectable by X-ray absorption spectroscopy (XAS) as demonstrated by comparison of Na10[Co4(H2O)2(PW9O34)2] (1) and Na17[((Co(H2O))Co2PW9O34)2(PW6O26)] (2). XAS reveals the integrity of 1 uncompromised by oxidant-driven water oxidation, which proceeds without formation of catalytic cobalt oxide.
متن کاملThe Interaction of Water with Free Mn4 O4 (+) Clusters: Deprotonation and Adsorption-Induced Structural Transformations.
As the biological activation and oxidation of water takes place at an inorganic cluster of the stoichiometry CaMn4 O5 , manganese oxide is one of the materials of choice in the quest for versatile, earth-abundant water splitting catalysts. To probe basic concepts and aid the design of artificial water-splitting molecular catalysts, a hierarchical modeling strategy was employed that explores clu...
متن کاملAnion coordination selective [Mn3] and [Mn4] assemblies: synthesis, structural diversity, magnetic properties and catechol oxidase activity.
Syntheses, crystal structures, magnetic properties and catechol oxidation behavior are presented for [Mn3] and [Mn4] aggregates, [MnMn(II)(O2CMe)4(dmp)2(H2O)2]·2H2O (1·2H2O), [MnMn(II)(O2CCH2Cl)4(dmp)2(H2O)2]·H2O·MeOH (2·H2O·MeOH), [Mn(μ3-O)(dmp)4(μ-DMSO)(N3)(DMSO)(H2O)]ClO4·DMSO (3·ClO4·DMSO), and [Mn(μ3-O)(dmp)4(μ-DMSO)(ClO4)(DMSO)(H2O)]ClO4·DMSO (4·ClO4·DMSO), developed with single type liga...
متن کاملElectrocatalytic oxidation of formaldehyde onto Pt nanoparticles modified poly (m-toluidine)/Triton X-100 film
In this work, spherical Pt nanometer-scale particles supported on the poly (m-toluidine)/Triton X-100 film modified carbon nanotube paste electrode (Pt/PMT (TX-100)/MCNTPE) was used as a potent catalyst for electrooxidation of formaldehyde (HCHO) in both 0.5 M H2SO4 and 0.1 M NaOH solutions. The obtained results showed that utilization of TX-100 as an additive during the electropolymerization p...
متن کامل