A Missense Mutation in the Zinc Finger Domain of OsCESA7 Deleteriously Affects Cellulose Biosynthesis and Plant Growth in Rice

نویسندگان

  • Daofeng Wang
  • Yanling Qin
  • Jingjing Fang
  • Shoujiang Yuan
  • Lixiang Peng
  • Jinfeng Zhao
  • Xueyong Li
چکیده

Rice is a model plant species for the study of cellulose biosynthesis. We isolated a mutant, S1-24, from ethyl methanesulfonate (EMS)-treated plants of the japonica rice cultivar, Nipponbare. The mutant exhibited brittle culms and other pleiotropic phenotypes such as dwarfism and partial sterility. The brittle culms resulted from reduced mechanical strength due to a defect in thickening of the sclerenchyma cell wall and reduced cellulose content in the culms of the S1-24 mutant. Map-based gene cloning and a complementation assay showed that phenotypes of the S1-24 mutant were caused by a recessive point mutation in the OsCESA7 gene, which encodes cellulose synthase A subunit 7. The missense mutation changed the highly conserved C40 to Y in the zinc finger domain. The OsCESA7 gene is expressed predominantly in the culm at the mature stage, particularly in mechanical tissues such as vascular bundles and sclerenchyma cells, consistent with the brittle phenotype in the culm. These results indicate that OsCESA7 plays an important role in cellulose biosynthesis and plant growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall.

Several brittle culm mutations of rice (Oryza sativa) causing fragility of plant tissues have been identified genetically but not characterized at a molecular level. We show here that the genes responsible for three distinct brittle mutations of rice, induced by the insertion of the endogenous retrotransposon Tos17, correspond to CesA (cellulose synthase catalytic subunit) genes, OsCesA4, OsCes...

متن کامل

Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice.

Plant chitinases, a class of glycosyl hydrolases, participate in various aspects of normal plant growth and development, including cell wall metabolism and disease resistance. The rice (Oryza sativa) genome encodes 37 putative chitinases and chitinase-like proteins. However, none of them has been characterized at the genetic level. In this study, we report the isolation of a brittle culm mutant...

متن کامل

Brittle Culm15 Encodes a Membrane-Associated Chitinase-Like Protein Required for Cellulose Biosynthesis in Rice1[C][W][OA]

Plant chitinases, a class of glycosyl hydrolases, participate in various aspects of normal plant growth and development, including cell wall metabolism and disease resistance. The rice (Oryza sativa) genome encodes 37 putative chitinases and chitinase-like proteins. However, none of them has been characterized at the genetic level. In this study, we report the isolation of a brittle culm mutant...

متن کامل

Knockout of the AtCESA2 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis.

Complete cellulose synthesis is required to form functional cell walls and to facilitate proper cell expansion during plant growth. AtCESA2 is a member of the cellulose synthase A family in Arabidopsis (Arabidopsis thaliana) that participates in cell wall formation. By analysis of transgenic seedlings, we demonstrated that AtCESA2 was expressed in all organs, except root hairs. The atcesa2 muta...

متن کامل

Screening of DFNB3 in Iranian families with autosomal recessive non-syndromic hearing loss reveals a novel pathogenic mutation in the MyTh4 domain of the MYO15A gene in a linked family

Objective(s): Non-syndromic sensorineural hearing loss (NSHL) is a common disorder affecting approximately 1 in 500 newborns. This type of hearing loss is extremely heterogeneous and includes over 100 loci. Mutations in the GJB2 gene have been implicated in about half of autosomal recessive NSHL (ARNSHL) cases, making this the most common cause of ARNSHL. For the latter form of deafness, most f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016