Medullary thick ascending limb buffer vasoconstriction of renal outer-medullary vasa recta in salt-resistant but not salt-sensitive rats.
نویسندگان
چکیده
We have demonstrated previously that paracrine signaling occurs between medullary thick ascending limb (mTAL) and the contractile pericytes of outer-medullary vasa recta (VR), termed "tubular-vascular cross-talk." The aim of the current study was to determine whether tubular-vascular cross-talk has a functional effect on vasoconstrictor responses to angiotensin II and to determine whether this is altered in the Dahl salt-sensitive (SS) rat. Studies were performed on salt-resistant consomic SS.13 Brown Norway (BN) and SS rats using a novel outer medullary tissue strip preparation in which freshly isolated VRs within VR bundles were perfused either alone or in combination with nearby mTAL. In VRs from SS.13BN rats, angiotensin II (1 µmol/L) increased VR bundle intracellular Ca2+ concentration 19±9 nmol/L (n=8) and reduced focal diameter in perfused VRs by -20±7% (n=5). In the presence of nearby mTAL, however, VR bundle intracellular Ca2+ concentration (-9±8 nmol/L; n=8) and VR diameter (-1±4%, n=7) in SS.13BN rats were unchanged by angiotensin II. In contrast, in Dahl SS rats, angiotensin II resulted in rapid and sustained increase in VR bundle intracellular Ca2+ concentration (89±48 nmol/L, n=7; 50±24%, n=8) and a reduction in VR diameter of (-17±7%, n=7; -11±4%, n=5) in both isolated VRs and VRs with nearby mTAL, respectively. In VRs with mTAL from SS13BN rats, inhibiton of purinergic receptors resulted in an increase in VR bundle intracellular Ca2+ concentration, indicating that purinergic signaling buffers vasoconstriction. Importantly, our in vitro data were able to predict medullary blood flow responses to angiotensin II in SS and SS.13BN rats in vivo. We conclude that paracrine signaling from mTAL buffers angiotensin II vasoconstriction in Dahl salt-resistant SS.13BN rats but not SS rats.
منابع مشابه
Enhanced superoxide production in renal outer medulla of Dahl salt-sensitive rats reduces nitric oxide tubular-vascular cross-talk.
Studies were conducted to determine whether the diffusion of NO from the renal medullary thick ascending limb (mTAL) to the contractile pericytes of surrounding vasa recta was reduced and, conversely, whether diffusion of oxygen free radicals was enhanced in the salt-sensitive Dahl S rat (SS/Mcwi). Angiotensin II ([Ang II] 1 micromol/L)-stimulated NO and superoxide (O(2)(*-)) production were im...
متن کاملHV1 acts as a sodium sensor and promotes superoxide production in medullary thick ascending limb of Dahl salt-sensitive rats.
We previously characterized a H(+) transport pathway in medullary thick ascending limb nephron segments that when activated stimulated the production of superoxide by nicotinamide adenine dinucleotide phosphate oxidase. Importantly, the activity of this pathway was greater in Dahl salt-sensitive rats than salt-resistant (SS.13(BN)) rats, and superoxide production was enhanced in low Na(+) media...
متن کاملReactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension.
The physiological evidence linking the production of superoxide, hydrogen peroxide, and nitric oxide in the renal medullary thick ascending limb of Henle (mTAL) to regulation of medullary blood flow, sodium homeostasis, and long-term control of blood pressure is summarized in this review. Data obtained largely from rats indicate that experimentally induced elevations of either superoxide or hyd...
متن کاملA novel amiloride-sensitive h+ transport pathway mediates enhanced superoxide production in thick ascending limb of salt-sensitive rats, not na+/h+ exchange.
It has been reported previously that H(+) efflux via the Na(+)/H(+) exchange stimulates NAD(P)H oxidase-dependent superoxide (O(2)(.-)) production in medullary thick ascending limb. We have demonstrated recently that N-methyl-amiloride-sensitive O(2)(.-) production is enhanced in the thick ascending limb of Dahl salt-sensitive (SS) rats, suggesting that H(+) efflux through Na(+)/H(+) exchangers...
متن کاملIsolation and perfusion of rat inner medullary vasa recta.
Outer medullary isolated descending vasa recta have proven to be experimentally tractable, and consequently much has been learned about outer medullary vasa recta endothelial transport, pericyte contractile mechanisms, and tubulovascular interactions. In contrast, inner medullary vasa recta have never been isolated from any species, and therefore isolated vasa recta function has never been subj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 60 4 شماره
صفحات -
تاریخ انتشار 2012