General Techniques for Constructing Variational Integrators
نویسندگان
چکیده
The numerical analysis of variational integrators relies on variational error analysis, which relates the order of accuracy of a variational integrator with the order of approximation of the exact discrete Lagrangian by a computable discrete Lagrangian. The exact discrete Lagrangian can either be characterized variationally, or in terms of Jacobi’s solution of the Hamilton– Jacobi equation. These two characterizations lead to the Galerkin and shooting constructions for discrete Lagrangians, which depend on a choice of a numerical quadrature formula, together with either a finite-dimensional function space or a one-step method. We prove that the properties of the quadrature formula, finite-dimensional function space, and underlying one-step method determine the order of accuracy and momentum-conservation properties of the associated variational integrators. We also illustrate these systematic methods for constructing variational integrators with numerical examples.
منابع مشابه
Spectral-collocation variational integrators
Spectral methods are a popular choice for constructing numerical approximations for smooth problems, as they can achieve geometric rates of convergence and have a relatively small memory footprint. In this paper, we introduce a general framework to convert a spectral-collocation method into a shootingbased variational integrator for Hamiltonian systems. We also compare the proposed spectral-col...
متن کاملAn Overview of Lie Group Variational Integrators and Their Applications to Optimal Control
We introduce a general framework for the construction of variational integrators of arbitrarily high-order that incorporate Lie group techniques to automatically remain on a Lie group, while retaining the geometric structure-preserving properties characteristic of variational integrators, including symplecticity, momentum-preservation, and good long-time energy behavior. This is achieved by con...
متن کاملProlongation-collocation Variational Integrators
We introduce a novel technique for constructing higher-order variational integrators for Hamiltonian systems of ODEs. In particular, we are concerned with generating globally smooth approximations to solutions of a Hamiltonian system. Our construction of the discrete Lagrangian adopts Hermite interpolation polynomials and the Euler–Maclaurin quadrature formula, and involves applying collocation...
متن کاملVariational Integrators for Almost-Integrable Systems
We construct several variational integrators—integrators based on a discrete variational principle—for systems with Lagrangians of the form L = LA + εLB, with ε ≪ 1, where LA describes an integrable system. These integrators exploit that ε ≪ 1 to increase their accuracy by constructing discrete Lagrangians based on the assumption that the integrator trajectory is close to that of the integrable...
متن کاملConstructing Equivalence-preserving Dirac Variational Integrators with Forces
The dynamical motion of mechanical systems possesses underlying geometric structures, and preserving these structures in numerical integration improves the qualitative accuracy and reduces the long-time error of the simulation. For a single mechanical system, structure preservation can be achieved by adopting the variational integrator construction. This construction has been generalized to mor...
متن کامل