Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells.
نویسندگان
چکیده
The lipid mediator sphingosine-1-phosphate (S1P), the product of sphingosine kinase (SPHK)-induced phosphorylation of sphingosine, is known to stabilize interendothelial junctions and prevent microvessel leakiness. Here, we investigated the role of SPHK1 activation in regulating the increase in pulmonary microvessel permeability induced by challenge of mice with lipopolysaccharide or thrombin ligation of protease-activating receptor (PAR)-1. Both lipopolysaccharide and thrombin increased mouse lung microvascular permeability and resulted in a delayed activation of SPHK1 that was coupled to the onset of restoration of permeability. In contrast to wild-type mice, Sphk1(-/-) mice showed markedly enhanced pulmonary edema formation in response to lipopolysaccharide and PAR-1 activation. Using endothelial cells challenged with thrombin concentration (50 nmol/L) that elicited a transient but reversible increase in endothelial permeability, we observed that increased SPHK1 activity and decreased intracellular S1P concentration preceded the onset of barrier recovery. Thus, we tested the hypothesis that released S1P in a paracrine manner activates its receptor S1P1 to restore the endothelial barrier. Knockdown of SPHK1 decreased basal S1P production and Rac1 activity but increased basal endothelial permeability. In SPHK1-depleted cells, PAR-1 activation failed to induce Rac1 activation but augmented RhoA activation and endothelial hyperpermeability response. Knockdown of S1P1 receptor in endothelial cells also enhanced the increase in endothelial permeability following PAR-1 activation. S1P treatment of Sphk1(-/-) lungs or SPHK1-deficient endothelial cells restored endothelial barrier function. Our results suggest the crucial role of activation of the SPHK1-->S1P-->S1P1 signaling pathway in response to inflammatory mediators in endothelial cells in regulating endothelial barrier homeostasis.
منابع مشابه
Basal and angiopoietin-1-mediated endothelial permeability is regulated by sphingosine kinase-1.
Endothelial cells (ECs) regulate the barrier function of blood vessels. Here we show that basal and angiopoietin-1 (Ang-1)-regulated control of EC permeability is mediated by 2 different functional states of sphingosine kinase-1 (SK-1). Mice depleted of SK-1 have increased vascular leakiness, whereas mice transgenic for SK-1 in ECs show attenuation of leakiness. Furthermore, Ang-1 rapidly and t...
متن کاملSphingosine-1-phosphate signaling and biological activities in the cardiovascular system.
The plasma lysophospholipid mediator sphingosine-1-phosphate (S1P) is produced exclusively by sphingosine kinase (SPHK) 1 and SPHK2 in vivo, and plays diverse biological and pathophysiological roles by acting largely through three members of the G protein-coupled S1P receptors, S1P1, S1P2 and S1P3. S1P1 expressed on endothelial cells mediates embryonic vascular maturation and maintains vascular...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1–phosphate receptor-1 crossactivation
Endothelial cells normally form a dynamically regulated barrier at the blood-tissue interface, and breakdown of this barrier is a key pathogenic factor in inflammatory disorders such as sepsis. Pro-inflammatory signaling by the blood coagulation protease thrombin through protease activated receptor-1 (PAR1) can disrupt endothelial barrier integrity, whereas the bioactive lipid sphingosine 1-pho...
متن کاملInduction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN.
OBJECTIVES S1P acts via the S1PR family of G protein-coupled receptors to regulate a variety of physiological responses. Whereas S1P1R activates G(i)- and PI-3-kinase-dependent signals to inhibit vascular permeability, the related S1P2R inhibits the PI-3-kinase pathway by coupling to the Rho-dependent activation of the PTEN phosphatase. However, cellular consequences of S1P2R signaling in the v...
متن کاملBone marrow progenitor cells induce endothelial adherens junction integrity by sphingosine-1-phosphate-mediated Rac1 and Cdc42 signaling.
RATIONALE Little is known about the contribution of bone marrow-derived progenitor cells (BMPCs) in the regulation endothelial barrier function as defined by microvascular permeability alterations at the level of adherens junctions (AJs). OBJECTIVE We investigated the role of BMPCs in annealing AJs and thereby in preventing lung edema formation induced by endotoxin (LPS). METHODS AND RESULT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 103 10 شماره
صفحات -
تاریخ انتشار 2008