Janus silica film with hydrophobic and hydrophilic surfaces grown at an oil–water interface†
نویسندگان
چکیده
We report a new methyltrimethoxysilane (MTMS) based route to growing a Janus silica film at the oil–water interface, which upon drying shows anisotropic wetting by water on its two surfaces. The contact angle of water on the surface grown in contact with the oil-side is found to be 150 , but it is much smaller, 65 , on the side which grew in contact with the aqueous phase. This large difference in the contact angle is found to be primarily because of two reasons: (i) orientation of hydrophobic methyl groups towards the oil-side of the film as confirmed by micro-Raman spectroscopy, and (ii) microstructural differences in the oil and water-side surfaces of the film. The inherently hydrophobic silica cluster network on the oil-side surface also exhibits larger pores that provide an air cushion for the water droplet and engenders a large contact angle. Effects of oil–water interfacial tension on the film growth and on its wetting and microstructural properties are also investigated by addition of cationic and anionic surfactants in the aqueous subphase. Static and dynamic wetting properties of the oil-side surface indicate that these do not change significantly due to variations in either the microstructure or chemical nature of the surface alone, but is a combined effect of both. Interestingly, the Janus films showing asymmetric surface properties can also be grown directly and thus integrated with a variety of porous surfaces like cotton, paper, hydrogel and ceramic substrates by having these surfaces straddle an oil–water interface.
منابع مشابه
Solvent-free synthesis of Janus colloidal particles.
Taking advantage of the quick and efficient access of vapor to surfaces, a simple, solvent-free method is demonstrated to synthesize Janus colloidal particles in large quantity and with high efficiency. First, at the liquid-liquid interface of emulsified molten wax and water, untreated silica particles adsorb and are frozen in place when the wax solidifies. The exposed surfaces of the immobiliz...
متن کاملDroplet and Fluid Gating by Biomimetic Janus Membranes
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 6023 wileyonlinelibrary.com Our work is inspired by passive transport across cell membranes, which offer an intriguing example of regulating membrane permeability based on transmembrane hydrophilic/hydrophobic interactions. [ 10 ] The cell membrane has a lipid bilayer structure consisting of hydrophilic phosphate outer layers and hydrophobic hyd...
متن کاملSurface Deposition and Phase Behavior of Oppositely Charged Polyion–Surfactant Ion Complexes. Delivery of Silicone Oil Emulsions to Hydrophobic and Hydrophilic Surfaces
The adsorption from mixed polyelectrolyte-surfactant solutions at hydrophobized silica surfaces was investigated by in situ null-ellipsometry, and compared to similar measurements for hydrophilic silica surfaces. Three synthetic cationic copolymers of varying hydrophobicity and one cationic hydroxyethyl cellulose were compared in mixtures with the anionic surfactant sodium dodecylsulfate (SDS) ...
متن کاملHydrophobicity at a Janus interface.
Water confined between adjoining hydrophobic and hydrophilic surfaces (a Janus interface) is found to form stable films of nanometer thickness whose responses to shear deformations are extraordinarily noisy. The power spectrum of this noise is quantified. In addition, the frequency dependence of the complex shear modulus is a power law with slope one-half, indicating a distribution of relaxatio...
متن کاملControlling the geometry (Janus balance) of amphiphilic colloidal particles.
A simple, generalizable method is described to produce Janus colloidal particles in large quantity with control over their respective hydrophobic and hydrophilic areas (Janus balance) in large quantity. To this end, charged particles adsorb onto the liquid-liquid interface of emulsions of molten wax and water in the presence of surfactants of opposite charge, whose concentration modifies how de...
متن کامل