Explicit Construction of Universal Deformation Rings

نویسندگان

  • B. de Smit
  • H. W. Lenstra
چکیده

Let V be an absolutely irreducible representation of a profinite group G over the residue field k of a noetherian local ring O. For local complete O-algebras A with residue field k the representations of G over A that reduce to V over k are given by O-algebra homomorphisms R → A, where R is the universal deformation ring of V . We show this with an explicit construction of R. The ring R is noetherian if and only if H(G,Endk(V )) has finite dimension over k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Deformation Theory of Lie Algebras

This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...

متن کامل

Experimental and Numerical Simulation Investigation on Crushing Response of Foam-Filled Conical Tubes Stiffened with Annular Rings

In this paper, crashworthiness characteristics of conical steel tubes stiffened by annular rings and rigid polyurethane foam are investigated. For this purpose, wide circumferential rings are created from the outer surface of the conical tube at some determined areas along tube length. In fact, this method divides a long conical tube into several tubes of shorter length. When this structure is ...

متن کامل

Deformation of Outer Representations of Galois Group II

This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...

متن کامل

On the Fedosov Deformation Quantization beyond the Regular Poisson Manifolds

A simple iterative procedure is suggested for the deformation quantization of (irregular) Poisson brackets associated to the classical Yang-Baxter equation. The construction is shown to admit a pure algebraic reformulation giving the Universal Deformation Formula (UDF) for any triangular Lie bialgebra. A simple proof of classification theorem for inequivalent UDF's is given. As an example the e...

متن کامل

Deformation of L∞-Algebras

In this paper, deformations of L∞-algebras are defined in such a way that the bases of deformations are L∞-algebras, as well. A universal and a semiuniversal deformation is constructed for L∞-algebras, whose cotangent complex admits a splitting. The paper also contains an explicit construction of a minimal L∞-structure on the homology H of a differential graded Lie algebra L and of an L∞-quasi-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995