Kernel Topic Models
نویسندگان
چکیده
Latent Dirichlet Allocation models discrete data as a mixture of discrete distributions, using Dirichlet beliefs over the mixture weights. We study a variation of this concept, in which the documents’ mixture weight beliefs are replaced with squashed Gaussian distributions. This allows documents to be associated with elements of a Hilbert space, admitting kernel topic models (KTM), modelling temporal, spatial, hierarchical, social and other structure between documents. The main challenge is efficient approximate inference on the latent Gaussian. We present an approximate algorithm cast around a Laplace approximation in a transformed basis. The KTM can also be interpreted as a type of Gaussian process latent variable model, or as a topic model conditional on document features, uncovering links between earlier work in these areas.
منابع مشابه
Gaussian Process Topic Models
We introduce Gaussian Process Topic Models (GPTMs), a new family of topic models which can leverage a kernel among documents while extracting correlated topics. GPTMs can be considered a systematic generalization of the Correlated Topic Models (CTMs) using ideas from Gaussian Process (GP) based embedding. Since GPTMs work with both a topic covariance matrix and a document kernel matrix, learnin...
متن کاملOnline learning of positive and negative prototypes with explanations based on kernel expansion
The issue of classification is still a topic of discussion in many current articles. Most of the models presented in the articles suffer from a lack of explanation for a reason comprehensible to humans. One way to create explainability is to separate the weights of the network into positive and negative parts based on the prototype. The positive part represents the weights of the correct class ...
متن کاملTopic Model Kernel: An Empirical Study towards Probabilistically Reduced Features for Classification
Probabilistic topic models have become a standard in modern machine learning with wide applications in organizing and summarizing ‘documents’ in high-dimensional data such as images, videos, texts, gene expression data, and so on. Representing data by dimensional reduction of mixture proportion extracted from topic models is not only richer in semantics than bag-of-word interpretation, but also...
متن کاملKernel Density Topic Models: Visual Topics Without Visual Words
The computer vision community has greatly benefited from transferring techniques originally developed in the document processing domain to the visual domain by means of discretizing the features space into visual words. This paper reinvestigates the necessity of this artificially discretization of the continuous space of visual features and consequently proposes an alternative formulation of th...
متن کاملSolving Fuzzy Impulsive Fractional Differential Equations by Reproducing Kernel Hilbert Space Method
The aim of this paper is to use the Reproducing kernel Hilbert Space Method (RKHSM) to solve the linear and nonlinear fuzzy impulsive fractional differential equations. Finding the numerical solutionsof this class of equations are a difficult topic to analyze. In this study, convergence analysis, estimations error and bounds errors are discussed in detail under some hypotheses which provi...
متن کامل