Operators with an Absolute Functional Calculus
نویسنده
چکیده
We study sectorial operators with a special type of functional calculus, which we term an absolute functional calculus. A typical example of such an operator is an invertible operator A (defined on a Banach space X) considered on the real interpolation space (Dom(A),X)θ,p where 0 < θ < 1 and 1 < p < ∞. In general the absolute functional calculus can be characterized in terms of real interpolation spaces. We show that operators of this type have a strong form of the H∞−calculus and behave very well with respect to the joint functional calculus. We give applications of these results to recent work of Arendt, Batty and Bu on the existence of Hölder-continuous solutions for the abstract Cauchy problem.
منابع مشابه
On certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کاملComments on the Paper: N. J. Kalton and T. Kucherenko, Operators with an Absolute
Introduction. Nigel Kalton was my Ph.D. thesis advisor at the University of Missouri-Columbia, where I arrived in 2001. My prior studies took place at Kharkov National University, and they focused broadly on functional analysis. I felt privileged to have the opportunity of working with Nigel, who was a world leading expert in this area. I became involved with the topic of functional calculus fo...
متن کاملA numerical approach for variable-order fractional unified chaotic systems with time-delay
This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...
متن کاملFunctional Calculus for Non-commuting Operators with Real Spectra via an Iterated Cauchy Formula
We define a smooth functional calculus for a noncommuting tuple of (unbounded) operators Aj on a Banach space with real spectra and resolvents with temperate growth, by means of an iterated Cauchy formula. The construction is also extended to tuples of more general operators allowing smooth functional calculii. We also discuss the relation to the case with commuting operators.
متن کامل