Assessment of forced responses of the Australian Community Climate and Earth System Simulator (ACCESS) 1.3 in CMIP5 historical detection and attribution experiments
نویسندگان
چکیده
The Australian Community Climate and Earth System Simulator (ACCESS) coupled climate model version 1.3 participated in phase five of the Coupled Model Intercomparison Project (CMIP5) with an initial contribution of high priority experiments. Further standard experiments have since been conducted with ACCESS1.3, including an ensemble of three simulations for the historical period (1850–2005) forced with time-evolving natural and anthropogenic forcings. Additional ensembles of simulations have been conducted for the same period with subsets of known forcings, including with natural forcings only (‘historicalNat’) and with greenhouse gas forcings only (‘historicalGHG’). In this study, we describe this ACCESS1.3 contribution to CMIP5 and assess several key aspects of ACCESS1.3 forced responses in these experiments against observations and an ensemble of participating CMIP5 models, consisting of 40 realisations from ten models. Overall, ACCESS1.3 historical experiments demonstrate skill in simulating the global and regional metrics assessed that is comparable to the CMIP5 multi-model ensemble utilised. Global annual average temperature and precipitation trends simulated with ACCESS1.3 (0.05–0.07 K/decade; −0.007 to −0.0004 mm day-1/decade) largely lie within the CMIP5 ensemble window (0.06 − 0.18 K/decade; −0.01 to 0.009 mm day-1/decade) and near those observed (0.10 K/decade; −0.0007 to −0.001 mm day-1/decade) over the 1950–2005 period. For the ACCESS1.3 historicalNat and historicalGHG experiments, simulated temperature trends are also predominately within the CMIP5 multi-model ensemble range. Similarly, ACCESS1.3 (−0.07 to −0.12 K) and the CMIP5 models (−0.03 to −0.21 K) largely capture the composited observed decrease in global temperature (−0.04 K) following three major late 20th century volcanic eruptions. However, like all global climate models, ACCESS1.3 has deficiencies that should be considered. In particular, one of most notable features of ACCESS1.3 historical simulations is the reduced warming trend over the period 1950–2005 that is evident in all ACCESS1.3 realisations at the global-scale for Australia, relative to both observations and the CMIP5 multi-model mean. This appears to be related to the overly strong response to increases in anthropogenic aerosols. Overall, these historical period experiments using ACCESS1.3 with various forcings are useful for inclusion with other CMIP5 models for studies aimed at detecting and attributing climatic changes.
منابع مشابه
Detection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains)
.Detection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains) Abstract One of the most important challenges for the human communities is Global Warming. This vital problem affected by Climate Change and corresponding effects. Thus this article attempted to assess the trend of real climate variables from syno...
متن کاملآشکارسازی تغییرات بارشهای حدی و نسبت دهی به تغییر اقلیم با استفاده از روش استاندارد انگشت نگاشت بهینه (مطالعه موردی : جنوب غرب ایران)
Understanding the changes in extreme precipitation over a region is very important for adaptation strategies to climate change. One of the most important topics in this field is detection and attribution of climate change. Over the past two decades, there has been an increasing interest for scientists, engineers and policy makers to study about the effects of external forcing to the climatic va...
متن کاملThe Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6
Detection and attribution (D&A) simulations were important components of CMIP5 and underpinned the climate change detection and attribution assessments of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The primary goals of the Detection and Attribution Model Intercomparison Project (DAMIP) are to facilitate improved estimation of the contributions of anthropogenic...
متن کاملThe land surface model component of ACCESS: description and impact on the simulated surface climatology
The land surface component of the Australian Community Climate and Earth System Simulator (ACCESS) is one difference between the two versions of ACCESS used to run simulations for the Coupled Model Intercomparison Project (CMIP5). The Met Office Surface Exchange Scheme (MOSES) and the Community Atmosphere Biosphere Land Exchange (CABLE) model are described and compared. The impact on the simula...
متن کاملاثر تغییر اقلیم بر امواج گرمایی سواحل شمالی خلیجفارس
Climate change is one of the most significant threats facing the world today. One of the most important consequences of climate change is increasing frequency of climate hazards, mainly heat waves. This phenomena has a robust impacts on human and other ecosystems. The aim of this study is investigating changes of heat waves in historical (1980-2014) and projected (2040-2074) data in northern co...
متن کامل