Large-Margin Metric Learning for Partitioning Problems

نویسندگان

  • Rémi Lajugie
  • Sylvain Arlot
  • Francis R. Bach
چکیده

In this paper, we consider unsupervised partitioning problems, such as clustering, image segmentation, video segmentation and other change-point detection problems. We focus on partitioning problems based explicitly or implicitly on the minimization of Euclidean distortions, which include mean-based change-point detection, K-means, spectral clustering and normalized cuts. Our main goal is to learn a Mahalanobis metric for these unsupervised problems, leading to feature weighting and/or selection. This is done in a supervised way by assuming the availability of several potentially partially labelled datasets that share the same metric. We cast the metric learning problem as a large-margin structured prediction problem, with proper definition of regularizers and losses, leading to a convex optimization problem which can be solved efficiently with iterative techniques. We provide experiments where we show how learning the metric may significantly improve the partitioning performance in synthetic examples, bioinformatics, video segmentation and image segmentation problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Margin Metric Learning for Constrained Partitioning Problems

We consider unsupervised partitioning problems based explicitly or implicitly on the minimization of Euclidean distortions, such as clustering, image or video segmentation, and other change-point detection problems. We emphasize on cases with specific structure, which include many practical situations ranging from meanbased change-point detection to image segmentation problems. We aim at learni...

متن کامل

Distance Metric Learning for Large Margin Nearest Neighbor Classification

We show how to learn aMahanalobis distance metric for k-nearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven data sets of varying size and difficulty, we find that metrics trained in this way lead to signif...

متن کامل

Convex Perturbations for Scalable Semidefinite Programming

Many important machine learning problems are modeled and solved via semidefinite programs; examples include metric learning, nonlinear embedding, and certain clustering problems. Often, off-the-shelf software is invoked for the associated optimization, which can be inappropriate due to excessive computational and storage requirements. In this paper, we introduce the use of convex perturbations ...

متن کامل

Improving Performance of Self-Organising Maps with Distance Metric Learning Method

Self-Organising Maps (SOM) are Artificial Neural Networks used in Pattern Recognition tasks. Their major advantage over other architectures is human readability of a model. However, they often gain poorer accuracy. Mostly used metric in SOM is the Euclidean distance, which is not the best approach to some problems. In this paper, we study an impact of the metric change on the SOM’s performance ...

متن کامل

Large Margin Multi-Task Metric Learning

Multi-task learning (MTL) improves the prediction performance on multiple, different but related, learning problems through shared parameters or representations. One of the most prominent multi-task learning algorithms is an extension to support vector machines (svm) by Evgeniou et al. [15]. Although very elegant, multi-task svm is inherently restricted by the fact that support vector machines ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1303.1280  شماره 

صفحات  -

تاریخ انتشار 2013