Non-parametric regression for binary dependent variables

نویسندگان

  • MARKUS FRÖLICH
  • Markus Frölich
چکیده

Finite-sample properties of non-parametric regression for binary dependent variables are analyzed. Non parametric regression is generally considered as highly variable in small samples when the number of regressors is large. In binary choice models, however, it may be more reliable since its variance is bounded. The precision in estimating conditional means as well as marginal effects is investigated in settings with many explanatory variables (14 regressors) and small sample sizes (250 or 500 observations). The Klein–Spady estimator, Nadaraya–Watson regression and local linear regression often perform poorly in the simulations. Local likelihood logit regression, on the other hand, is 25 to 55% more precise than parametric regression in the Monte Carlo simulations. In an application to female labour supply, local logit finds heterogeneity in the effects of children on employment that is not detected by parametric or semiparametric estimation. (The semiparametric estimator actually leads to rather similar results as the parametric estimator.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The New Palgrave Dictionary of Economics Online semiparametric estimation

Semiparametric estimation methods are used for models which are partly parametric and partly nonparametric; typically the parametric part is an underlying regression function which is assumed to be linear in the observable explanatory variables, while the nonparametric component involves the distribution of the model's ‘error terms’. Semiparametric methods are particularly useful for limited de...

متن کامل

A Bayesian Approach to Bivariate Surface Estimation

This paper outlines a general Bayesian approach to estimating a bivariate regression function in a nonpara-metric manner. It models the function using a bivariate regression spline basis with many terms. Binary indicator variables corresponding to these terms are introduced to explicitly model the uncertainty of whether, or not, the terms provide a signiicant contribution to the regression. The...

متن کامل

Local Nonlinear Least Squares : Using Parametric Information

We introduce a new nonparametric regression estimator that uses prior information on regression shape in the form of a parametric model. In eeect, we nonparametrically encompass the parametric model. We obtain estimates of the regression function and its derivatives along with local parameter estimates that can be interpreted from within the parametric model. We establish the uniform consistenc...

متن کامل

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Stock price analysis using machine learning method(Non-sensory-parametric backup regression algorithm in lin-ear and nonlinear mode)

The most common starting point for investors when buying a stock is to look at the trend of price changes. In recent years, different models have been used to predict stock prices by researchers, and since artificial intelligence techniques, including neural networks, genetic algorithms and fuzzy logic, have achieved successful re-sults in solving complex problems; in this regard, more exploita...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006