The Ca2+ dynamics of isolated mouse beta-cells and islets: implications for mathematical models.

نویسندگان

  • Min Zhang
  • Paula Goforth
  • Richard Bertram
  • Arthur Sherman
  • Leslie Satin
چکیده

[Ca(2+)](i) and electrical activity were compared in isolated beta-cells and islets using standard techniques. In islets, raising glucose caused a decrease in [Ca(2+)](i) followed by a plateau and then fast (2-3 min(-1)), slow (0.2-0.8 min(-1)), or a mixture of fast and slow [Ca(2+)](i) oscillations. In beta-cells, glucose transiently decreased and then increased [Ca(2+)](i), but no islet-like oscillations occurred. Simultaneous recordings of [Ca(2+)](i) and electrical activity suggested that differences in [Ca(2+)](i) signaling are due to differences in islet versus beta-cell electrical activity. Whereas islets exhibited bursts of spikes on medium/slow plateaus, isolated beta-cells were depolarized and exhibited spiking, fast-bursting, or spikeless plateaus. These electrical patterns in turn produced distinct [Ca(2+)](i) patterns. Thus, although isolated beta-cells display several key features of islets, their oscillations were faster and more irregular. beta-cells could display islet-like [Ca(2+)](i) oscillations if their electrical activity was converted to a slower islet-like pattern using dynamic clamp. Islet and beta-cell [Ca(2+)](i) changes followed membrane potential, suggesting that electrical activity is mainly responsible for the [Ca(2+)] dynamics of beta-cells and islets. A recent model consisting of two slow feedback processes and passive endoplasmic reticulum Ca(2+) release was able to account for islet [Ca(2+)](i) responses to glucose, islet oscillations, and conversion of single cell to islet-like [Ca(2+)](i) oscillations. With minimal parameter variation, the model could also account for the diverse behaviors of isolated beta-cells, suggesting that these behaviors reflect natural cell heterogeneity. These results support our recent model and point to the important role of beta-cell electrical events in controlling [Ca(2+)](i) over diverse time scales in islets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential patterns of glucose-induced electrical activity and intracellular calcium responses in single mouse and rat pancreatic islets.

Although isolated rat islets are widely used to study in vitro insulin secretion and the underlying metabolic and ionic processes, knowledge on the properties of glucose-induced electrical activity (GIEA), a key step in glucose-response coupling, has been gathered almost exclusively from microdissected mouse islets. Using a modified intracellular recording technique, we have now compared the pa...

متن کامل

A mathematical study of the differential effects of two SERCA isoforms on Ca2+ oscillations in pancreatic islets.

Cytosolic Ca2+ dynamics are important in the regulation of insulin secretion from the pancreatic beta-cells within islets of Langerhans. These dynamics are sculpted by the endoplasmic reticulum (ER), which takes up Ca2+ when cytosolic levels are high and releases it when cytosolic levels are low. Calcium uptake into the ER is through sarcoendoplasmic reticulum Ca2+-ATPases, or SERCA pumps. Two ...

متن کامل

The unique cytoarchitecture of human pancreatic islets has implications for islet cell function.

The cytoarchitecture of human islets has been examined, focusing on cellular associations that provide the anatomical framework for paracrine interactions. By using confocal microscopy and multiple immunofluorescence, we found that, contrary to descriptions of prototypical islets in textbooks and in the literature, human islets did not show anatomical subdivisions. Insulin-immunoreactive beta c...

متن کامل

بررسی اثر مهاری سلول‌های بنیادی مزانشیمی بافت چربی بر روی تکثیر سلول‌های تک هسته‌ای طحالی موش دیابتی C57BL/6 در محیط آزمایشگاه

Background: Type 1 diabetes (T1D) is a T-cell mediated autoimmune disorder in which pancreas beta-cell destruction causes insulin deficiency and hyperglycemia. In addition to daily insulin treatment, allogeneic islet transplant inT1D is another therapeutic way that needs immunosuppressive drugs to control autoimmune damage and graft rejection. Since life-long application of these drugs is ...

متن کامل

A calcium-based phantom bursting model for pancreatic islets.

Insulin-secreting beta-cells, located within the pancreatic islets of Langerhans, are excitable cells that produce regular bursts of action potentials when stimulated by glucose. This system has been the focus of mathematical investigation for two decades, spawning an array of mathematical models. Recently, a new class of models has been introduced called 'phantom bursters' [Bertram et al. (200...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 84 5  شماره 

صفحات  -

تاریخ انتشار 2003