Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis

نویسندگان

  • Fang Yang
  • Rabindranath De La Fuente
  • N. Adrian Leu
  • Claudia Baumann
  • K. John McLaughlin
  • P. Jeremy Wang
چکیده

During meiosis, the arrangement of homologous chromosomes is tightly regulated by the synaptonemal complex (SC). Each SC consists of two axial/lateral elements (AEs/LEs), and numerous transverse filaments. SC protein 2 (SYCP2) and SYCP3 are integral components of AEs/LEs in mammals. We find that SYCP2 forms heterodimers with SYCP3 both in vitro and in vivo. An evolutionarily conserved coiled coil domain in SYCP2 is required for binding to SYCP3. We generated a mutant Sycp2 allele in mice that lacks the coiled coil domain. The fertility of homozygous Sycp2 mutant mice is sexually dimorphic; males are sterile because of a block in meiosis, whereas females are subfertile with sharply reduced litter size. Sycp2 mutant spermatocytes exhibit failure in the formation of AEs and chromosomal synapsis. Strikingly, the mutant SYCP2 protein localizes to axial chromosomal cores in both spermatocytes and fetal oocytes, but SYCP3 does not, demonstrating that SYCP2 is a primary determinant of AEs/LEs and, thus, is required for the incorporation of SYCP3 into SCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Ecm11-Gmc2 Complex Promotes Synaptonemal Complex Formation through Assembly of Transverse Filaments in Budding Yeast

During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here...

متن کامل

Meiotic failure in male mice lacking an X-linked factor.

Meiotic silencing of sex chromosomes may cause their depletion of meiosis-specific genes during evolution. Here, we challenge this hypothesis by reporting the identification of TEX11 as the first X-encoded meiosis-specific factor in mice. TEX11 forms discrete foci on synapsed regions of meiotic chromosomes and appears to be a novel constituent of meiotic nodules involved in recombination. Loss ...

متن کامل

Relationship of DNA double-strand breaks to synapsis in Drosophila.

The relationship between synaptonemal complex formation (synapsis) and double-strand break formation (recombination initiation) differs between organisms. Although double-strand break creation is required for normal synapsis in Saccharomyces cerevisiae and the mouse, it is not necessary for synapsis in Drosophila and Caenorhabditis elegans. To investigate the timing of and requirements for doub...

متن کامل

Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex.

The synaptonemal complex is an elaborate meiosis-specific supramolecular protein assembly that promotes chromosome synapsis and meiotic recombination. We inactivated the meiosis-specific gene Tex12 and found that TEX12 is essential for progression of meiosis in both male and female germ cells. Structural analysis of the synaptonemal complex in Tex12-/- meiocytes revealed a disrupted central ele...

متن کامل

G-band position effects on meiotic synapsis and crossing over.

An examination of synaptic data from a series of X-autosome translocations and crossover data from an extensive series of autosome-autosome translocations and autosomal inversions in mice has lead to the development of a hypothesis which predicts synaptic and recombinational behavior of chromosomal aberrations during meiosis. This hypothesis predicts that in heterozygotes for chromosomal rearra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 173  شماره 

صفحات  -

تاریخ انتشار 2006