Incomplete spinal cord injury promotes durable functional changes within the spinal locomotor circuitry.
نویسندگان
چکیده
While walking in a straight path, changes in speed result mainly from adjustments in the duration of the stance phase while the swing phase remains relatively invariant, a basic feature of the spinal central pattern generator (CPG). To produce a broad range of locomotor behaviors, the CPG has to integrate modulatory inputs from the brain and the periphery and alter these swing/stance characteristics. In the present work we raise the issue as to whether the CPG can adapt or reorganize in response to a chronic change of supraspinal inputs, as is the case after spinal cord injury (SCI). Kinematic data obtained from six adult cats walking at different treadmill speeds were collected to calculate the cycle and subphase duration at different stages after a first spinal hemisection at T(10) and after a subsequent complete SCI at T(13) respectively aimed at disconnecting unilaterally and then totally the spinal cord from its supraspinal inputs. The results show, first, that the neural control of locomotion is flexible and responsive to a partial or total loss of supraspinal inputs. Second, we demonstrate that a hemisection induces durable plastic changes within the spinal locomotor circuitry below the lesion. In addition, this study gives new insights into the organization of the spinal CPG for locomotion such that phases of the step cycle (swing, stance) can be independently regulated for adapting to speed and also that the CPGs controlling the left and right hindlimbs can, up to a point, be regulated independently.
منابع مشابه
Title: Incomplete Spinal Cord Injury Promotes Durable Functional Changes within the Spinal 1 Locomotor Circuitry 2 Groupe De Recherche Sur Le Système Nerveux Central (frsq) And
32 While walking in a straight path, changes in speed result mainly from adjustments in the 33 duration of the stance phase while the swing phase remains relatively invariant, a basic feature of 34 the spinal central pattern generator (CPG). To produce a broad range of locomotor behaviors, the 35 CPG has to integrate modulatory inputs from the brain and the periphery and alter these 36 swing/st...
متن کاملTreadmill training promotes spinal changes leading to locomotor recovery after partial spinal cord injury in cats.
After a spinal hemisection at thoracic level in cats, the paretic hindlimb progressively recovers locomotion without treadmill training but asymmetries between hindlimbs persist for several weeks and can be seen even after a further complete spinal transection at T13. To promote optimal locomotor recovery after hemisection, such asymmetrical changes need to be corrected. In the present study we...
متن کاملTransplanting P75-Suppressed Bone Marrow Stromal Cells Promotes Functional Behavior in a Rat Model of Spinal Cord Injury
Background: Bone marrow stromal cells (BMSC) have been successfully employed for movement deficit recovery in spinal cord injury (SCI) rat models. One of the unsettled problems in cell transplantation is the relative high proportion of cell death, specifically after neural differentiation. According to our previous studies, p75 receptor, known as the death receptor, is only expressed in BMSC in...
متن کاملRecovery of hindlimb locomotion after incomplete spinal cord injury in the cat involves spontaneous compensatory changes within the spinal locomotor circuitry.
After incomplete spinal cord injury (SCI), compensatory changes occur throughout the whole neuraxis, including the spinal cord below the lesion, as suggested by previous experiments using a dual SCI paradigm. Indeed, cats submitted to a lateral spinal hemisection at T10-T11 and trained on a treadmill for 3-14 wk re-expressed bilateral hindlimb locomotion as soon as 24 h after spinalization, a p...
متن کاملDual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern.
The recovery of voluntary quadrupedal locomotion after an incomplete spinal cord injury can involve different levels of the CNS, including the spinal locomotor circuitry. The latter conclusion was reached using a dual spinal lesion paradigm in which a low thoracic partial spinal lesion is followed, several weeks later, by a complete spinal transection (i.e., spinalization). In this dual spinal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 108 1 شماره
صفحات -
تاریخ انتشار 2012