An Explicit Formula for Lanczos Polynomials*

نویسندگان

  • George Cybenko
  • James H. Wilkinson
  • Jack Dongarra
چکیده

The Lanczos algorithm for tridiagonalizing a given matrix A generates a sequence of approximating matrices A, that can naturally be obtained as restrictions to subspaces. The eigenvalues of these approximating matrices are well known to be good approximations to the extreme eigenvalues of A. In this paper we produce explicit formulas for the characteristic polynomials of the A,, in terms of the eigenvalues of A. These formulas can be used to explain heuristically why these approximations are often quite good. At present, we have no concrete analytic argument that explains the quality of the approximation. The main result draws on the formal relationship between the Lanczos algorithm and Pad& approximations to the moment generating function of A. This result is one of the few analytic results available for the unsymmetric Lanczos algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

On composition of generating functions

In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...

متن کامل

Chromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs

In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...

متن کامل

4 M ay 2 00 9 An ( inverse ) Pieri formula for Macdonald polynomials of type C Michel

We give an explicit Pieri formula for Macdonald polynomials attached to the root system Cn (with equal multiplicities). By inversion we obtain an explicit expansion for two-row Macdonald polynomials of type C.

متن کامل

Formulas for the Fourier Series of Orthogonal Polynomials in Terms of Special Functions

—An explicit formula for the Fourier coef cients of the Legendre polynomials can be found in the Bateman Manuscript Project. However, formulas for more general classes of orthogonal polynomials do not appear to have been worked out. Here we derive explicit formulas for the Fourier series of Gegenbauer, Jacobi, Laguerre and Hermite polynomials. The methods described here apply in principle to an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001