How many chiral centers can Raman optical activity spectroscopy distinguish in a molecule?

نویسندگان

  • Benjamin Simmen
  • Thomas Weymuth
  • Markus Reiher
چکیده

To study the capabilities and limitations of Raman optical activity, (-)-(M)σ-[10]helicene and (-)-(M)σ-[4]helicene serve as scaffold molecules on which new chiral centers are introduced by substitution of hydrogen atoms with other functional groups. These functional groups are deuterium atoms, fluorine atoms, and methyl groups. Multiply deuterated species are compared. Then, results of singly deuterated derivatives are compared against results obtained from singly fluorinated and methylated derivatives. The analysis required the calculation of a total of 2433 Raman optical activity spectra. The method we propose for the comparison of the various Raman optical activity spectra is based on the total intensity of squared difference spectra. This allows a qualitative comparison of pairs of Raman optical activity spectra and the extraction of the pair of most similar Raman optical activity spectra for each group of stereoisomers. Different factors were accounted for, such as the spectral resolution (modeled by line broadening) and the range of vibrational frequencies considered. In the case of σ-[4]helicene all generated stereoisomers in each group can be distinguished from one another by Raman optical activity spectroscopy. For σ-[10]helicene this holds except for the lower one of the two resolutions considered. Here, the group consisting of stereoisomers with five chiral centers contains at least one pair of derivatives whose Raman optical activity spectra cannot be distinguished from one another. This indicates that an increased molecular size has a negative effect on the number of chiral centers which can be distinguished by Raman optical activity spectroscopy. Regarding the different substituents, stereoisomers are the better distinguishable in Raman optical activity spectroscopy, the more distinct the signals of the substituent are from the rest of the spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inspecting chiral molecules by Raman optical activity spectroscopy

Raman optical activity (ROA) is a relatively new method combining the variability of scattering experiments with the structural sensitivity of chiral spectroscopy. Typically, ROA can be employed to determine absolute configuration (AC) of organic compounds, chiral metal complexes, and conformation of biologically relevant chiral molecules in solution. The present review covers the latest theore...

متن کامل

Vibrational optical activity (VOA) is due to the differential response of a molecule to left-circularly polarized (LCP) versus right-circularly polarized (RCP) radiation during a vibrational transition

There are two principal forms of vibrational optical activity (VOA), an IR form referred to as vibrational circular dichroism (VCD) and Raman form known as Raman optical activity (ROA). This paper reports examples of the application of VCD spectroscopy for the determination of the absolute configuration and conformation of chiral molecules, e.g. cyclic -lactams. VCD spectroscopy can be applied...

متن کامل

Correction: Chiral sensing of amino acids and proteins chelating with Eu(III) complexes by Raman optical activity spectroscopy.

Correction for 'Chiral sensing of amino acids and proteins chelating with Eu(III) complexes by Raman optical activity spectroscopy' by Tao Wu et al., Phys. Chem. Chem. Phys., 2016, DOI: 10.1039/c6cp03968e.

متن کامل

Theoretical study of magnetic susceptibility and optical activity of small molecules containing one chiral center

In the first part of this work, correlation between optical activity and elements of magnetic susceptibility tensor (MST) for five classes of model small molecules containing a single chiral center has been studied using quantum computational techniques at DFT-B3LYP level of theory with 6-311G basis set. Several molecular properties are used to reduce the MST elements prior to the examination o...

متن کامل

A new ultrafast technique for measuring the terahertz dynamics of chiral molecules: the theory of optical heterodyne-detected Raman-induced Kerr optical activity.

Optical heterodyne-detected Raman-induced Kerr optical activity (OHD-RIKOA) is a nonresonant ultrafast chiroptical technique for measuring the terahertz-frequency Raman spectrum of chirally active modes in liquids, solutions, and glasses of chiral molecules. OHD-RIKOA has the potential to provide much more information on the structure of molecules and the symmetries of librational and vibration...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 116 22  شماره 

صفحات  -

تاریخ انتشار 2012