Bi-semiorders with frontiers on finite sets
نویسندگان
چکیده
This paper studies an extension of bi-semiorders in which a “frontier” is added between the various relations used. This extension is motivated by the study of additive representations of ordered partitions and coverings defined on product sets of two components.
منابع مشابه
Numerical representability of semiorders
In the framework of the analysis of orderings whose associated indifference relation is not necessarily transitive, we study the structure of a semiorder, and its representability through a real-valued function and a threshold. Inspired in a recent characterization of the representability of interval orders, we obtain a full characterization of the existence of numerical representations for sem...
متن کاملInductive Characterizations of Finite Interval Orders and Semiorders
We introduce an inductive definition for two classes of orders. By simple proofs, we show that one corresponds to the interval orders class and that the other is exactly the semiorders class. To conclude we consider most of the known equivalence theorems on interval orders and on semiorders, and we give simple and direct inductive proofs of these equivalences with ours characterizations.
متن کاملGeneralizations of Semiorders: A Review Note
Semiorders may form the simplest class of partially ordered sets that accommodate thresholds of discriminability in binary comparisons. Many other classes of ordered sets that generalize the uniform-threshold feature of semiorders have been studied in recent years. This note describes a variety of generalizations and their interrelationships, including equivalences and proper inclusions between...
متن کاملLimits of Interval Orders and Semiorders
We study poset limits given by sequences of finite interval orders or, as a special case, finite semiorders. In the interval order case, we show that every such limit can be represented by a probability measure on the space of closed subintervals of [0, 1], and we define a subset of such measures that yield a unique representation. In the semiorder case, we similarly find unique representations...
متن کاملLimits of Interval Orders and Semiorders
We study poset limits given by sequences of finite interval orders or, as a special case, finite semiorders. In the interval order case, we show that every such limit can be represented by a probability measure on the space of closed subintervals of [0, 1], and we define a subset of such measures that yield a unique representation. In the semiorder case, we similarly find unique representations...
متن کامل