Acquired Phototrophy through Retention of Functional Chloroplasts Increases Growth Efficiency of the Sea Slug Elysia viridis
نویسندگان
چکیده
Photosynthesis is a fundamental process sustaining heterotrophic organisms at all trophic levels. Some mixotrophs can retain functional chloroplasts from food (kleptoplasty), and it is hypothesized that carbon acquired through kleptoplasty may enhance trophic energy transfer through increased host growth efficiency. Sacoglossan sea slugs are the only known metazoans capable of kleptoplasty, but the relative fitness contributions of heterotrophy through grazing, and phototrophy via kleptoplasts, are not well understood. Fitness benefits (i.e. increased survival or growth) of kleptoplasty in sacoglossans are commonly studied in ecologically unrealistic conditions under extended periods of complete darkness and/or starvation. We compared the growth efficiency of the sacoglossan Elysia viridis with access to algal diets providing kleptoplasts of differing functionality under ecologically relevant light conditions. Individuals fed Codium fragile, which provide highly functional kleptoplasts, nearly doubled their growth efficiency under high compared to low light. In contrast, individuals fed Cladophora rupestris, which provided kleptoplasts of limited functionality, showed no difference in growth efficiency between light treatments. Slugs feeding on Codium, but not on Cladophora, showed higher relative electron transport rates (rETR) in high compared to low light. Furthermore, there were no differences in the consumption rates of the slugs between different light treatments, and only small differences in nutritional traits of algal diets, indicating that the increased growth efficiency of E. viridis feeding on Codium was due to retention of functional kleptoplasts. Our results show that functional kleptoplasts from Codium can provide sacoglossan sea slugs with fitness advantages through photosynthesis.
منابع مشابه
Chloroplast digestion and the development of functional kleptoplasty in juvenile Elysia timida (Risso, 1818) as compared to short-term and non-chloroplast-retaining sacoglossan slugs
Sacoglossan sea slugs are the only metazoans known to perform functional kleptoplasty, the sequestration and retention of functional chloroplasts within their digestive gland cells. Remarkably, a few species with this ability can survive starvation periods of 3-12 months likely due to their stolen chloroplasts. There are no reports of kleptoplast transfer from mother slug to either eggs or juve...
متن کاملMollusc/algal chloroplast symbiosis: how can isolated chloroplasts continue to function for months in the cytosol of a sea slug in the absence of an algal nucleus?
A marine sea slug, Elysia chlorotica, has acquired the ability to carry out photosynthesis as a result of forming an intracellular symbiotic association with chloroplasts of the chromophytic alga, Vaucheria litorea. The symbiont chloroplasts (kleptoplasts) are functional, i.e. they evolve oxygen and fix CO(2) and actively transcribe and translate proteins for several months in the sea slug cyto...
متن کاملTranscriptomic evidence for the expression of horizontally transferred algal nuclear genes in the photosynthetic sea slug, Elysia chlorotica.
Analysis of the transcriptome of the kleptoplastic sea slug, Elysia chlorotica, has revealed the presence of at least 101 chloroplast-encoded gene sequences and 111 transcripts matching 52 nuclear-encoded genes from the chloroplast donor, Vaucheria litorea. These data clearly show that the symbiotic chloroplasts are translationally active and, of even more interest, that a variety of functional...
متن کاملHorizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica.
The sea slug Elysia chlorotica acquires plastids by ingestion of its algal food source Vaucheria litorea. Organelles are sequestered in the mollusc's digestive epithelium, where they photosynthesize for months in the absence of algal nucleocytoplasm. This is perplexing because plastid metabolism depends on the nuclear genome for >90% of the needed proteins. Two possible explanations for the per...
متن کاملOceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance.
This first comprehensive analysis of the global biogeography of marine protistan plankton with acquired phototrophy shows these mixotrophic organisms to be ubiquitous and abundant; however, their biogeography differs markedly between different functional groups. These mixotrophs, lacking a constitutive capacity for photosynthesis (i.e. non-constitutive mixotrophs, NCMs), acquire their phototrop...
متن کامل