Anomalous shear band characteristics and extra-deep shock-affected zone in Zr-based bulk metallic glass treated with nanosecond laser peening
نویسندگان
چکیده
The effects of nanosecond laser peening on Zr41Ti14Cu12.5Ni10Be22.5 metallic glass were investigated in this study. The peening treatment produced an extra-deep shock-affected zone compared to crystal metal. As opposed to the conventional shear bands, numerous arc shear bands appeared and aggregated in the vertical direction of the laser beam, forming basic units for accommodating plastic deformation. The arc shear bands exhibited short and discrete features near the surface of the material, then grew longer and fewer at deeper peened layer depths, which was closely related to the laser shock wave attenuation. An energy dissipation model was established based on Hugoniot Elastic Limit and shear band characteristics to represent the formation of an extra-deep shock-affected zone. The results presented here suggest that the bulk modification of metallic glass with a considerable affected depth is feasible. Further, they reveal that nanosecond laser peening is promising as an effective approach to tuning shear bands for improved MGs ductility.
منابع مشابه
Laser Shock Peening on Zr-based Bulk Metallic Glass and Its Effect on Plasticity: Experiment and Modeling
The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and good wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. ...
متن کاملMicrostructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions
Results are presented for a ductile metal reinforced bulk metallic glass matrix composite based on glass forming compositions in the Zr-Ti-Cu-Ni-Be system. Primary dendrite growth and solute partitioning in the molten state yields a microstructure consisting of a ductile crystalline Ti-Zr-Nb beta phase, with bcc structure, in a Zr-Ti-Nb-Cu-Ni-Be bulk metallic glass matrix. Under unconstrained m...
متن کاملReduced Fracture Toughness of Metallic Glass at Cryogenic Temperature
The effects of cryogenic temperature on the toughness of a Zr-based metallic glass are investigated. Based on three-dimensional fracture morphologies at different temperatures, the crack formation and propagation are analyzed. Through the calculation of the shear transformation zone volume, the shear modulus and bulk modulus of the metallic glass at different temperatures and the crack formatio...
متن کاملAtomistic simulation of shear localization in Cu–Zr bulk metallic glass
Shear deformations of Cu57Zr43 bulk metallic glass (BMG) model systems are performed using molecular dynamics simulation. The results suggest that both the hydrostatic stress and the stress normal to the shear plane should affect the shear response (modified Mohr–Coulomb yield criterion). We see shear localization and shear band nucleation in both a small system of 2000 atoms, and large systems...
متن کاملEvolution of shear bands in bulk metallic glasses under dynamic loading
Shear band spacing in Zr-based bulk metallic glasses (BMGs) under dynamic loads is found to vary with position and local strain rate in the indented region. To investigate the dependence of shear band evolution characteristics on local strain rate and normal stress, a micromechanical model based on momentum diffusion is proposed. The thermomechanical model takes into account the normal stress d...
متن کامل