Spin-resolved band structure of heterojunction Bi-bilayer/3D topological insulator in the quantum dimension regime in annealed Bi2Te2.4Se0.6
نویسندگان
چکیده
Two- and three-dimensional topological insulators are the key materials for the future nanoelectronic and spintronic devices and quantum computers. By means of angle- and spin-resolved photoemission spectroscopy we study the electronic and spin structure of the Bi-bilayer/3D topological insulator in quantum tunneling regime formed under the short annealing of Bi2Te2.4Se0.6. Owing to the temperature-induced restructuring of the topological insulator's surface quintuple layers, the hole-like spin-split Bi-bilayer bands and the parabolic electronic-like state are observed instead of the Dirac cone. Scanning Tunneling Microscopy and X-ray Photoemission Spectroscopy measurements reveal the appearance of the Bi2 terraces at the surface under the annealing. The experimental results are supported by density functional theory calculations, predicting the spin-polarized Bi-bilayer bands interacting with the quintuple-layers-derived states. Such an easily formed heterostructure promises exciting applications in spin transport devices and low-energy electronics.
منابع مشابه
Engineering Electronic Structure of a Two-Dimensional Topological Insulator Bi(111) Bilayer on Sb Nanofilms by Quantum Confinement Effect.
We report on the fabrication of a two-dimensional topological insulator Bi(111) bilayer on Sb nanofilms via a sequential molecular beam epitaxy growth technique. Our angle-resolved photoemission measurements demonstrate the evolution of the electronic band structure of the heterostructure as a function of the film thickness and reveal the existence of a two-dimensional spinful massless electron...
متن کاملNovel attributes of steep-slope staggered type heterojunction p-channel electron-hole bilayer tunnel field effect transistor
In this paper, the electrical characteristics and sensitivity analysis of staggered type p-channel heterojunction electron-hole bilayer tunnel field effect transistor (HJ-EHBTFET) are thoroughly investigated via simulation study. The minimum lattice mismatch between InAs/GaAs0.1Sb0.9 layers besides low carrier effective mass of materials provides high probability ...
متن کاملInterfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te3.
We report the formation of a bilayer Bi(111) ultrathin film, which is theoretically predicted to be in a two-dimensional quantum spin Hall state, on a Bi(2)Te(3) substrate. From angle-resolved photoemission spectroscopy measurements and ab initio calculations, the electronic structure of the system can be understood as an overlap of the band dispersions of bilayer Bi and Bi(2)Te(3). Our results...
متن کاملBand topology and quantum spin Hall effect in bilayer graphene
We consider bilayer graphene in the presence of spin orbit coupling, to assess its behavior as a topological insulator. The first Chern number n for the energy bands of single and bilayer graphene is computed and compared. It is shown that for a given valley and spin, n in a bilayer is doubled with respect to the monolayer. This implies that bilayer graphene will have twice as many edge states ...
متن کاملDirect observation of spin-polarized surface states in the parent compound of a topological insulator using spin- and angle-resolved photoemission spectroscopy in a Mott-polarimetry mode
We report high-resolution spin-resolved photoemission spectroscopy (Spin-ARPES) measurements on the parent compound Sb of the recently discovered 3D topological insulator Bi1-xSbx [D. Hsieh et al., Nature 452, 970 (2008)]. By modulating the incident photon energy, we are able to map both the bulk and (111) surface band structure, from which we directly demonstrate that the surface bands are spi...
متن کامل