Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides
نویسندگان
چکیده
منابع مشابه
Theory of carrier depletion and light amplification in active slow light photonic crystal waveguides.
Using a perturbative approach, we perform a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguide. The impact of slow-light propagation on the carrier-depletion-induced nonlinear gain saturation of the device is investigated. An effective rate-equation-based model is presented. It is shown that it well a...
متن کاملErratum: Slow-light-enhanced gain in active photonic crystal waveguides.
Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material, which would have interesting application prospects, for example enabling ultra-compact optical amp...
متن کاملNonlinear light propagation in chalcogenide photonic crystal slow light waveguides.
Optical nonlinearity can be enhanced by the combination of highly nonlinear chalcogenide glass and photonic crystal waveguides (PCWs) providing strong optical confinement and slow-light effects. In a Ag-As(2)Se(3) chalcogenide PCW, the effective nonlinear parameter γeff reaches 6.3 × 10(4) W(-1)m(-1), which is 200 times larger than that in Si photonic wire waveguides. In this paper, we report t...
متن کاملInvestigation of FWM in dispersion-engineered GaInP photonic crystal waveguides
We report on the investigation of four-wave mixing (FWM) in a long (1.3 mm) dispersion-engineered Gallium Indium Phosphide (GaInP) photonic crystal (PhC) waveguide. A comparison with a non-engineered design is made with respect to measured FWM efficiency maps. A striking different response is observed, in terms of dependence on the pump wavelength and the spectral detuning. The benefits and the...
متن کاملObservations of four-wave mixing in slow-light silicon photonic crystal waveguides
Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conversion efficiency is observed. Concurrently, a decrease in the conversion bandwidth is observed due to the increase in group velocity dispersion in t...
متن کامل