Pedestrian detection on CAVIAR dataset using a movement feature space
نویسندگان
چکیده
This work develops a pedestrian detection system using a feature space based on level lines, called Movement Feature Space (MFS). Besides detecting the movement in the scene, this feature space defines the descriptors used by the classifiers to identify pedestrians. Locations hypotheses of pedestrian are performed by a cascade of boosted classifiers. The validation of these regions of interest is carried out by a Support Vector Machine classifier. Results rise to 81 % of good detection rate, having 0.6 false alarms per image on average on the FRONT VIEW CAVIAR dataset.
منابع مشابه
Exploring Sensor Fusion Schemes for Pedestrian Detection in Urban Scenarios
This work explores three schemes for pedestrian detection in urban scenarios using information gathered by a LIDAR and a monocular camera mounted on an electric vehicle. In the first scheme, pedestrian detection is conduct by a set of single classification methods trained with LIDAR and/or vision-based features. In the second scheme, the likelihoods from the single-classifiers are fused by mean...
متن کاملPedestrian Detection by Using a Spatio-Temporal Histogram of Oriented Gradients
In this paper, we propose a pedestrian detection algorithm based on both appearance and motion features to achieve high detection accuracy when applied to complex scenes. Here, a pedestrian’s appearance is described by a histogram of oriented spatial gradients, and his/her motion is represented by another histogram of temporal gradients computed from successive frames. Since pedestrians typical...
متن کاملPedestrian Detection in Infrared Outdoor Images Based on Atmospheric Situation Estimation
Observation in absolute darkness and daytime under every atmospheric situation is one of the advantages of thermal imaging systems. In spite of increasing trend of using these systems, there are still lots of difficulties in analysing thermal images due to the variable features of pedestrians and atmospheric situations. In this paper an efficient method is proposed for detecting pedestrians in ...
متن کاملRobust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation
Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. I...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کامل