Statistical Microbuckling Propagation Model for Compressive Strength Prediction of Fiber-Reinforced Composites
نویسندگان
چکیده
Compressive strength prediction for a fiber-reinforced composite material still remains an unresolved topic when dealing with composites in the design process. Although significant scatter is present in the experimental data, experimental test results are the only criteria on which to base design parameters. Although significant advances have been accomplished recently by various modeling techniques, only quantitative comparison with experimental data may be realized. This quantitative comparison requires the use of a semiempirical parameter into the model formulation, which is usually set as the fiber misalignment. By using a single value of the fiber misalignment within the composite~ model predictions easily match the experimental data because of the extreme sensitivity of the model with respect to fiber misalignment. However~ it is well known that there is not a unique value of fiber misalignment for all the fibers but rather a distribution of misalignments throughout the composite. In this paper, using the complete fiber misalignment distribution, stability theory is coupled with continuous damage mechanics to generate a model for compressive strength of continuous fiber-reinforced composites. Sample results are also presented showing the correlation of the analytical model with experimentally measured strengths.
منابع مشابه
Stepwise Regression for shear capacity assessment of steel fiber reinforced concrete beams
The addition of steel fibers into concrete improves the postcracking tensile strength of hardened concrete and hence significantly enhances the shear strength of reinforced concrete reinforced concrete beams. However, developing an accurate model for predicting the shear strength of steel fiber reinforced concrete (SFRC) beams is a challenging task as there are several parameters such as the co...
متن کاملInfluence of Temperature and Moisture on the Compressive Strength of Carbon Fiber Reinforced Polymers
The effect of moisture absorption and high temperature on the compressive strength of unidirectional IM7/977-2 carbon/epoxy resins have been investigated experimentally. The specimens were divided into 4 groups, and tested under 4 different conditions by varying the testing temperature and moisture parameters. The fiber orientation selected were 0o, ±45o and 90o...
متن کاملCompressive response and failure of fiber reinforced unidirectional composites
The compressive response of polymer matrix fiber reinforced unidirectional composites (PMC’s) is investigated via a combination of experiment and analysis. The study accounts for the nonlinear constitutive response of the polymer matrix material and examines the effect of fiber geometric imperfections, fiber mechanical properties and fiber volume fraction on the measured compressive strength an...
متن کاملA Simplified Micromechanical Model of Compressive Strength of Fiber-Reinforced Cementitious Composites
A micromechanical model is constructed for the compressive strength of fiber-reinforced cementitious composites (FRCs). This model is based on the classical models of compressive failure of brittle solids in which sliding microcracks induce wing-crack growth under compression loads. The concept of increased microcrack sliding resistance and wing-crack growth retardation associated with fiber br...
متن کاملCompressive Strength Prediction by ANN Formulation Approach for FRP Confined Rectangular Concrete Columns
Enhancement of strength and ductility is the main reason for the extensive use of FRP (fiber reinforced polymer) jackets to provide external confinement to reinforced concrete columns especially in seismic areas. Therefore, numerous researches have been carried out in order to provide a better description of the behavior of FRP confined concrete for practical design purposes. This study present...
متن کامل