The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod.
نویسندگان
چکیده
Garden pea (Pisum sativum) was prominent in early studies investigating the genetic control of flowering and the role of mobile flowering signals. In view of recent evidence that genes in the FLOWERING LOCUS T (FT) family play an important role in generating mobile flowering signals, we isolated the FT gene family in pea and examined the regulation and function of its members. Comparison with Medicago truncatula and soybean (Glycine max) provides evidence of three ancient subclades (FTa, FTb, and FTc) likely to be common to most crop and model legumes. Pea FT genes show distinctly different expression patterns with respect to developmental timing, tissue specificity, and response to photoperiod and differ in their activity in transgenic Arabidopsis thaliana, suggesting they may have different functions. We show that the pea FTa1 gene corresponds to the GIGAS locus, which is essential for flowering under long-day conditions and promotes flowering under short-day conditions but is not required for photoperiod responsiveness. Grafting, expression, and double mutant analyses show that GIGAS/FTa1 regulates a mobile flowering stimulus but also provide clear evidence for a second mobile flowering stimulus that is correlated with expression of FTb2 in leaf tissue. These results suggest that induction of flowering by photoperiod in pea results from interactions among several members of a diversified FT family.
منابع مشابه
DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock.
The DIE NEUTRALIS (DNE) locus in garden pea (Pisum sativum) was previously shown to inhibit flowering under noninductive short-day conditions and to affect a graft-transmissible flowering signal. In this study, we establish that DNE has a role in diurnal and/or circadian regulation of several clock genes, including the pea GIGANTEA (GI) ortholog LATE BLOOMER 1 (LATE1) and orthologs of the Arabi...
متن کاملPea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs.
Genes controlling the transition to flowering have been studied in several species, including Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), but have not yet received much attention in legumes. Here, we describe a new allelic series of late-flowering, photoperiod-insensitive mutants in the pea (Pisum sativum) LATE BLOOMER1 (LATE1) gene and show that LATE1 is an ortholog of Arabidop...
متن کاملThe Pea Photoperiod Response Gene STERILE NODES Is an Ortholog of LUX ARRHYTHMO.
The STERILE NODES (SN) locus in pea (Pisum sativum) was one of the first photoperiod response genes to be described and provided early evidence for the genetic control of long-distance signaling in flowering-time regulation. Lines homozygous for recessive sn mutations are early flowering and photoperiod insensitive, with an increased ability to promote flowering across a graft union in short-da...
متن کاملGmFT2a, a Soybean Homolog of FLOWERING LOCUS T, Is Involved in Flowering Transition and Maintenance
BACKGROUND Flowering reversion can be induced in soybean (Glycine max L. Merr.), a typical short-day (SD) dicot, by switching from SD to long-day (LD) photoperiods. This process may involve florigen, putatively encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana. However, little is known about the potential function of soybean FT homologs in flowering reversion. METHODS A photoperiod-re...
متن کاملFlowering Phenotype of Arabidopsis Plants Containing the FRIGIDA Gene'
We have compared the flowering response to vernalization, photoperiod, and far-red (FR) light of the Columbia (Col) and Landsberg erecfa (Ler) ecotypes of Arabidopsis into which the flowering-time locus FRIGIDA (FRI) has been introgressed with that of the wild types Col, Ler, and San Feliu-2 (Sf-2). In the early-flowering parenta1 ecotypes, Col and ler, a large decrease in flowering time in res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2011