Pathogenesis of Hypertrophic Cardiomyopathy is Mutation Rather Than Disease Specific: A Comparison of the Cardiac Troponin T E163R and R92Q Mouse Models
نویسندگان
چکیده
BACKGROUND In cardiomyocytes from patients with hypertrophic cardiomyopathy, mechanical dysfunction and arrhythmogenicity are caused by mutation-driven changes in myofilament function combined with excitation-contraction (E-C) coupling abnormalities related to adverse remodeling. Whether myofilament or E-C coupling alterations are more relevant in disease development is unknown. Here, we aim to investigate whether the relative roles of myofilament dysfunction and E-C coupling remodeling in determining the hypertrophic cardiomyopathy phenotype are mutation specific. METHODS AND RESULTS Two hypertrophic cardiomyopathy mouse models carrying the R92Q and the E163R TNNT2 mutations were investigated. Echocardiography showed left ventricular hypertrophy, enhanced contractility, and diastolic dysfunction in both models; however, these phenotypes were more pronounced in the R92Q mice. Both E163R and R92Q trabeculae showed prolonged twitch relaxation and increased occurrence of premature beats. In E163R ventricular myofibrils or skinned trabeculae, relaxation following Ca2+ removal was prolonged; resting tension and resting ATPase were higher; and isometric ATPase at maximal Ca2+ activation, the energy cost of tension generation, and myofilament Ca2+ sensitivity were increased compared with that in wild-type mice. No sarcomeric changes were observed in R92Q versus wild-type mice, except for a large increase in myofilament Ca2+ sensitivity. In R92Q myocardium, we found a blunted response to inotropic interventions, slower decay of Ca2+ transients, reduced SERCA function, and increased Ca2+/calmodulin kinase II activity. Contrarily, secondary alterations of E-C coupling and signaling were minimal in E163R myocardium. CONCLUSIONS In E163R models, mutation-driven myofilament abnormalities directly cause myocardial dysfunction. In R92Q, diastolic dysfunction and arrhythmogenicity are mediated by profound cardiomyocyte signaling and E-C coupling changes. Similar hypertrophic cardiomyopathy phenotypes can be generated through different pathways, implying different strategies for a precision medicine approach to treatment.
منابع مشابه
Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy.
Multiple mutations in cardiac troponin T (cTnT) can cause familial hypertrophic cardiomyopathy (FHC). Patients with cTnT mutations generally exhibit mild or no ventricular hypertrophy, yet demonstrate a high frequency of early sudden death. To understand the functional basis of these phenotypes, we created transgenic mouse lines expressing 30%, 67%, and 92% of their total cTnT as a missense (R9...
متن کاملAbnormal heart rate regulation in murine hearts with familial hypertrophic cardiomyopathy-related cardiac troponin T mutations.
Mutations in cardiac troponin T (cTnT), Δ160E and R92Q, have been linked to familial hypertrophic cardiomyopathy (FHC), and some studies have indicated that these mutations can lead to a high incidence of sudden cardiac death in the relative absence of significant ventricular hypertrophy. Alterations in autonomic function have been documented in patients with hypertrophic cardiomyopathy. We hyp...
متن کاملCa(2+) activation of myofilaments from transgenic mouse hearts expressing R92Q mutant cardiac troponin T.
The functional consequences of the R92Q mutation in cardiac troponin T (cTnT), linked to familial hypertrophic cardiomyopathy in humans, are not well understood. We have studied steady- and pre-steady-state mechanical activity of detergent-skinned fiber bundles from a transgenic (TG) mouse model in which 67% of the total cTnT in the heart was replaced by the R92Q mutant cTnT. TG fibers were mor...
متن کاملHypertrophy, fibrosis, and sudden cardiac death in response to pathological stimuli in mice with mutations in cardiac troponin T.
BACKGROUND Transgenic mouse models expressing a missense mutation (R92Q) or a splice donor site mutation (trunc) in the cardiac troponin T (cTnT) model familial hypertrophic cardiomyopathy (FHC) in humans. Although males from these strains share the unusual property of having significantly smaller ventricles and cardiac myocytes, they differ with regard to systolic function, fibrosis, and gene ...
متن کاملDecreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T.
The thin filament protein cardiac troponin T (cTnT) is an important regulator of myofilament activation. Here we report a significant change in cardiac energetics in transgenic mice bearing the missense mutation R92Q within the tropomyosin-binding domain of cTnT, a mutation associated with a clinically severe form of familial hypertrophic cardiomyopathy. This functional domain of cTnT has recen...
متن کامل