Non-commutativity and MELL in the Calculus of Structures
نویسندگان
چکیده
We introduce the calculus of structures: it is more general than the sequent calculus and it allows for cut elimination and the subformula property. We show a simple extension of multiplicative linear logic, by a self-dual noncommutative operator inspired by CCS, that seems not to be expressible in the sequent calculus. Then we show that multiplicative exponential linear logic benefits from its presentation in the calculus of structures, especially because we can replace the ordinary, global promotion rule by a local version. These formal systems, for which we prove cut elimination, outline a range of techniques and properties that were not previously available. Contrarily to what happens in the sequent calculus, the cut elimination proof is modular.
منابع مشابه
A Non-commutative Extension of MELL
We extend multiplicative exponential linear logic (MELL) by a non-commutative, self-dual logical operator. The extended system, called NEL, is defined in the formalism of the calculus of structures, which is a generalisation of the sequent calculus and provides a more refined analysis of proofs. We should then be able to extend the range of applications of MELL, by modelling a broad notion of s...
متن کاملA Non-commutative Extension of Multiplicative Exponential Linear Logic
We extend multiplicative exponential linear logic (MELL) by a noncommutative, self-dual logical operator. The extended system, called NEL, is defined in the formalism of the calculus of structures, which is a generalisation of the sequent calculus and provides a more refined analysis of proofs. We are then able to extend the expressiveness of MELL by modelling a broad notion of sequentiality. W...
متن کاملA System of Interaction and Structure IV: The Exponentials
We study some normalisation properties of the deep-inference proof system NEL, which can be seen both as 1) an extension of multiplicative exponential linear logic (MELL) by a certain non-commutative self-dual logical operator; and 2) an extension of system BV by the exponentials of linear logic. The interest of NEL resides in: 1) its being Turing complete, while the same for MELL is not known,...
متن کاملFinite groups with three relative commutativity degrees
For a finite group $G$ and a subgroup $H$ of $G$, the relative commutativity degree of $H$ in $G$, denoted by $d(H,G)$, is the probability that an element of $H$ commutes with an element of $G$. Let $mathcal{D}(G)={d(H,G):Hleq G}$ be the set of all relative commutativity degrees of subgroups of $G$. It is shown that a finite group $G$ admits three relative commutativity degrees if a...
متن کاملNON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS
A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...
متن کامل