The Largest Eigenvalue Of Sparse Random Graphs

نویسندگان

  • Michael Krivelevich
  • Benny Sudakov
چکیده

We prove that for all values of the edge probability p(n) the largest eigenvalue of a random graph G(n, p) satisfies almost surely: λ1(G) = (1 + o(1))max{ √ ∆, np}, where ∆ is a maximal degree of G, and the o(1) term tends to zero as max{ √ ∆, np} tends to infinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A tight bound of the largest eigenvalue of sparse random graph

We analyze the largest eigenvalue and eigenvector for the adjacency matrices of sparse random graph. Let λ1 be the largest eigenvalue of an n-vertex graph, and v1 be its corresponding normalized eigenvector. For graphs of average degree d log n, where d is a large enough constant, we show λ1 = d log n + 1 ± o(1) and 〈1, v1〉 = √ n ( 1−Θ ( 1 logn )) . It shows a limitation of the existing method ...

متن کامل

Sparse pseudo-random graphs are Hamiltonian

In this article we study Hamilton cycles in sparse pseudorandom graphs. We prove that if the second largest absolute value of an eigenvalue of a d-regular graph G on n vertices satisfies

متن کامل

Discrepancy and Eigenvalues of Cayley Graphs

We consider quasirandom properties for Cayley graphs of finite abelian groups. In particular, we show that having uniform edgedistribution (i.e., small discrepancy) and having large eigenvalue gap are equivalent properties for Cayley graphs, even if they are sparse. This positively answers a question of Chung and Graham [“Sparse quasi-random graphs”, Combinatorica 22 (2002), no. 2, 217–244] for...

متن کامل

Spectral and dynamical properties in classes of sparse networks with mesoscopic inhomogeneities.

We study structure, eigenvalue spectra, and random-walk dynamics in a wide class of networks with subgraphs (modules) at mesoscopic scale. The networks are grown within the model with three parameters controlling the number of modules, their internal structure as scale-free and correlated subgraphs, and the topology of connecting network. Within the exhaustive spectral analysis for both the adj...

متن کامل

Eigenvalues of Random Power Law Graphs

Many graphs arising in various information networks exhibit the “power law” behavior – the number of vertices of degree k is proportional to k−β for some positive β. We show that if β > 2.5, the largest eigenvalue of a random power law graph is almost surely (1 + o(1)) √ m where m is the maximum degree. Moreover, the k largest eigenvalues of a random power law graph with exponent β have power l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2003