Lectures on Chevalley Groups

نویسندگان

  • John Faulkner
  • Robert Wilson
چکیده

( b ) H is maximal n i l p o t e n t and every subgroup of f i n i t e l a d e x . . i s of f i n i t e index i n i t s normalizer. Proof of Theorem 6: ( a ) Map Ga -> #, by x,: t -> x,(t) . This is a r a t i o n a l homomorphism. So s i n c e Ga i s a connected , ~ g e b r a i c group s o i s Xa . Hence G is a lgebra ic and connected.. Let R = r a d G . Since R is so lvable and normal it i s f i n i t e by t h e Corol lary t o Theorem 5. Since R is a l s o connected R s 1 , and hence G i s semisimple. 4, (b and c ) H is t h e image of Gm under (t1,-*-,tC) -> 4 fl h i ( t i ) and hence i s a l g e b r a i c and connected; so B = U H is i-1 connected, a l g e b r a i c , and so lvable . Let G1 3 B . Then # G1 3 B wa B (some simple r o o t a) , s o G1 > , and hence by Corol la ry 6 of Theorem 4' G1 is not so lvab le and hence ( b ) holds. H is a maximal connected diagonal izable subgroup of B ( f o r any l a r g e r subgroup must i n t e r s e c t U n o n t r i v i a l l y ) . Hence H is a maximal connected diagonal izable subgroup of G (by a theorem i n Chevalleyts jgminaix-e); 3 0 ( c ) holds . 1 ( d ) is c l e a r . To prove ( e ) it s u f f i c e s by (iii) t o prove: Lemma 34: Let %, = [ x a ( t ) l t E kl and ha = [ h a ( t ) l t E k"] Then: ( a ) Fa is defined over ko and xa: G -> $a is a an isomorphism over ko . ( b ) 3, i s defined over ko and ha: Gm ->h is a a homomorphism over ko . Proof: Let {vi] be a b a s i s of M formed of weight vec to r s . Choose vi s o t h a t Xavi # 0 , then wr i t e Xavi = 2 c . .V , and 15 j choose v s o t h a t c i j # 0 . If vi is of weight p , t hen j 2 2 v is of weight p + a . Since x,(t) = 1 + t X a + t xa/2 + * * = j it follows t h a t if a i j is t h e (i , j ) matr ic coordinate (i # j ) func t ion t h e n a i j ( % ( t ) ) = c .t . A l l o t h e r c o e f f i c i e n t s of i~ x,(t) a r e polynomials over k i n t , hence a l s o i n 0 a i j This s e t of polynomial r e l a t i o n s de f ines ) (a a s a group over 1 k, . Now b-a : x a ( t ) -> t is an i n v e r s e of ia , s o t h e i j i j map x, i s an isoinorphism over ko . The proof of ( b ) i s l e f t a s an e x c e r c i s e . We can r ecove r t h e l a t t i c e s =o and L from t h e group G A a s fo l l ows . Le t ;i e L . 3 e f i n e : H --> G by $(wi(ti) ) = m ~ t ~ ~ ( ~ i ) . This i s a c h a r a c t e r def ined over ko . $1 g e n e r a t e s A a l a t t i c e L , t h e c h a r a c t e r group of H . The X,'s a r e de te r . mined by H a s t h e unique minimal un ipo t en t subgroups normalized A by H . If h = m h i ( t i ) t h e n h x,(t)hel = x a ( e ( h ) t ) where A A A a ( h ) = ntia(Hi) . a is c a l l e d a g l o b a l . Define Lo A A h t h e l a t t i c e gene ra t ed by a l l a . Then Lo C L . A S x e r c i s e : There e x i s t s a W-iscmorphism: L -> L such t h a t h A h A Lo -> L !J ----> ; c , and a -> a . (The a c t i o n of W on L 0 ' is g iven by t h e a c t i o n of N/H on t h e c h a r a c t e r g r o u p ) . We summarize our r e s u l t s i n : Ex i s t ence Theorem: Given a r o o t system C , a l a t t i c e L wi th -.-Lo C L C L1 (where Lo and L1 a r e t h e r o o t and weight l a t t i c e s , r e s p e c t i v e l y ) , and an a l g e b r a i c a l l y c lo sed f i e l d lc , t h e n t h e r e e x i s t s a semisiinple a l g e b r a i c group G def ined over k such t h a t L and L a r e r e a l i z e d a s t h e l a t t i c e s of g l o b a l r o o t s and char0 a c t e r s , r e s p e c t i v e l y , r e l a t i v e t o a maximal t o r u s . Furthermore 61 G , ga,. .. can be t aken over t h e prime f i e l d . The c l a s s i f i c a t i o n theorem, t h a t up t o k-isoixorphism every '% !!semisimple a l g e b r a i c group over k has been ob ta ined above, i s .& ... , H g iven by " I-'1 1 ( tl, >t4) -> ) is an isomorphisin over k of a lgej= 0 b r a i c groups. T t Proof: Wri te Hi = X n . .H n E . Given i t j ] we can f i n d 1 i j I1 . L { t i ] such t h a t tT. = Tti iJ ( f o r d e t ( n . . ) # 0 and kq. i s J -! 1 J I t 1 d i v i s i b l e ) . Then n h . (t . ) a c t s on V as m u l t i p l i c a t i o n by i J J P J $(Hi) = pi , i . e . a s n h i ( t i ) . This shows t h a t cp J 1 maps G~ onto i! . Clea r ly rp i s a r a t i o n a l ii1agi2ing def ined m over k . Let {pi] be t h e b a s i s of L dual t o { H i ] l ( i . e . 0 t , P ( H j ) np ;;. (H . ) = 6 . . ) . Wri te p i = .Z n p . Then n(n"t 1 J 1 3 , L E L P ., , j j 1 I -. 1 = ti 2 S O CP e x i s t s and is de f ined over lc . 0 Theorem 7: Let k be an a l g e b r a i c a l l y c losed f i e l d and ko t h e prime s u b f i e l d . Le t G be a Chevalley group p a r a n e t r i z e d by k and viewed a s an a l g e b r a i c group def ined over ko a s above. Then; 62 ( a ) U-HU is an open s u b v a r i e t y of G def ined over ko . ( b ) If n i s t h e number of p o s i t i v e r o o t s , t h e n t h e map kn k*.L CP: x kn -> U-HU def ined by v' x a ( t a ) n h i ( t i ) YO xa( ta) is an isomorphism of a 0 a of v a r i e k i e s over k . 0 Proof : ( a ) We cons ider t h e n a t u r a l a c t i o n of G on An r e l a t i v e t o a b a s i s (Yl , Y 2 , . . . , Y r ) over k made up of products 0 t 1 of His and Xas such t h a t Y1 = Ax,(u > 0 ) . For x E G w e s e t xYi = Z, a . . (x)Y and t h e n d = afl 1~ j , a f u n c t i o n on G over ko . We c la im t h a t x E U-HU = U-B i f and on ly i f d ( x ) # 0 . Assume x E U-B . Since B f i x e s Y1 up t o a nonzero m u l t i p l e and if u E Ut h e n uX, E Xa + % + x kXg , it fo l lows h t ( p ) < h t ( a ) t h a t d ( x ) # 0 . If x E Uw B wi th w E W , w # 1 , t h e same cons ide ra t ions show t h a t d ( x ) = 0 . I f wo E E makes a l l posi t i v e r o o t s n e g a t i v e t h e n by t h e equa t ion woU'w B = B wow B and 1 Theorem 4 t h e two cases above a r e exc lus ive and exhaus t ive , whence ( a ) . ( b j The map cp i s composed of t h e two maps Y'= (y1y\Y2, Y3) : ( t a l a > 0 x (ti) x ( t a l a > 0 -> Ux H x u , and 8: Ux H x U -> U-HU . We w i l l show t h a t t h e s e a r e i somorphisms over ko . For y2 t h i s fo l lows from Lemma 35. Cons i d e r y3 . Le t [vi ] be a b a s i s f o r V , t h e under ly ing vec tor space , made up of weight v e c t o r s i n t h e l a t t i c e i , and f i j t h e ?. norresponding coo rd ina t e f u n c t i o n s on End V , For each r o o t a -qm choose i = i ( a ) , j = j(a) ni = n ( a ) a s i n t h e proof of Lemma 34. s e t x = 1.1.x g ( t g ) . Choosing an o rde r ing of t h e p o s i t i v e 8 > 0 r o o t s c o n s i s t e n t wi th a d d i t i o n , we s e e a t once t l i a ' ~ f i ( a ) , j ( a ) ( X I = n ( a ) t a + an i n t e ~ r a l polynomial in t h e e a r l i e r t t s and t h a t f i j ( x ) is an i n t e g r a l polynomial i n t h e t f s f o r a l l i , j . Thus v3 is an isomorphism over k , and s i n i l a r l y f o r Yl . 0 To prove 0 i s an isomorphism we order t h e vi so t h a t U-,H;U c o n s i s t r e s p e c t i v e l y of subdiagonal un ipo t en t , d iagona l , super:, .<.,<...., . .. . , .:._ -c d iagonal un ipo ten t ma t r i ce s ( s e e Lemma 18, Cor. 3 ) , and t h e n w e . .. , . . . may assume t h a t t h e y c o n s i s t 'of a l l of t h e i n v e r t i b l e mat r ices of t h e s e t y p e s . Le t x = u-hu be i n U-HU and l e t t h e subdiagonal e n t r i e s of u , t l ie d iagona l e n t r i e s of h , t h e s u ~ e r d i a a o n a l e n t r i e s of u be l a b e l l e d t i wi th i > j i = j i < j r e I s p e c t i v e l y . We order t h e i n d i c e s s o t h a t i j precedes kg i n I case i 5 k, j 5 * and i j # kt . Then i n t h e t h r e e cases above I f . .(x) = t . i t . . , r e s p . t i j ~ t . . t . . , i n c r e a s e d by a n 1 J 1 J J J 11 1J i n t e g r a l polynomial i n t ' s preceed ing t i j . We may now induct i v e l y s o l v e f o r t l ie t f s a s r a t i o n a l forms over i n t h e f l s , t h e d i v i s i o n by t h e forms r e p r e s e n t i n g t l ie t . . I s be ing J J j u s t i f i e d by t h e f a c t t h a t t h e y a r e nonzero oil UoHU . Thus 8 i s an isomorphism over ko and ( b ) fo l lows . minors Call 1 , /::: 21 c o n s i s t s of a l l ( a i j ) such t h a t t h e a r e n ~ n s i n g ~ l a r . I 64 k Remark : It e a s i l y fo l lows t h a t t h e L i e a lgeb ra of G i s d We can now e a s i l y prove t h e fo l lowing important f a c t ( b u t w i l l r e f e r t h e r e a d e r t o ~ g m i n a i r e Bourbaki , Exp 219 i n s t e a d ) . Let G be a Chevalley group over Q , viewed a s above a s an a l g e b r a i c maLric group over $ , t h e prime f i e l d , and I t h e corresponding i d e a l over 22 ( c o n s i s t i n g of a l l polynomials over which van ish oil G ) . Then t h e s e t of ze ros of I i n any a lge b r a i c a l l y c l o s e d f i e l d k i s j u s t t h e Chevalley group over k of t h e same t y p e (same r o o t sys tem and same weight l a t t i c e ) a s G . Thus we have a f u n c t o r i a l d e f i n i t i o n i n t e rms of equa t ions of a l l of t h e semisimple a l g e b r a i c groups of any g iven t y p e . 1 Co ro l l a ry 1: Let k,ko , G ,V be as above. Let G be a Chevalley -. group construcZzd u s i n g V ' i n s t e a d of V b u t wi th t h e same . I Assume t h a t LV > LVT . Then t h e homomorphir;ia ~ 3 : G -> G I t a k i n g x,(t) ---3 x,(t) f o r a l l a and t i s a homomorphism I of a l g e b r a i c groups over ko . 1 Proof: Consider f i r s t cp I U-HU . By Theorem 7 we need on ly show t h a t cp [ H i s r a t i o n a l over ko The nonzero coo rd ina t e s of 1 T P ( H i ) 1 h i ( t i ) a r e TT -L ( E LV1) . The nonzero coo rd ina t e s i A H i ) of h . . a r e t i ( i i E LV) . Each of t h e former i s a 1 1 1 monomial i n t h e l a t t e r (because LVl C LV) , and hence i s r a t i o n a l 1 over k . Now f o r w E W, uW ( r e s p . w , ) can be chosen wi th 0 c o e f f i c i e n t s i n ko ( f o r w a ( l ) = ( 1 ) ( 1 ) a(1)) , s o t h a t 1 cp J(: U-B i s r a t i o n a l over ko . Since B.LB C w w -'u-B , we conc lude t h a t i s r a t i o n a l over ko 65 Coro l la ry . . 2: The homomorphism c p .: SL -a 2 > < K a , ) ( a > (of 1 Corol la ry 6 t o Theorem 4 ) i s a homomorphism of a l g e b r a i c groups over lco . Proof : This i s a s p e c i a l case of Coro l la ry 1. 7 C o r o l l a r y L : Assume Z,V, and 4 a r e f i x e d , t h a t V i s univ e r s a l , k C 1; a r e f i e l d s and Gk and GK a r e t h e corresponding Chevalley groups. Then Gk = GK n GLM, . Proof : C l e a r l y G C GK n GLM, . Suppose x E G K n G L M j k . 1c I Then x = uhw,v ( s e e Theorem 4 ) with W w d e f i n e d over t h e prime f i e l d . We must show t h a t xu,' E G k , i . e . uhuE G k -..1 where u = U W v w W . Write uhu= ('17 h i ( t i I a F x,(%) a > oAa 1 0 with ta, ti E K . Applying cp-' of Theorem 7 , we g e t > 0 X ( t i) X ( t a l a < 0 Since uhui s de f ined over k and cp-' i s def ined over ko , a l l t,, ti E k . Hence uhuE Gg . Remark: Suppose k = (t and G is a Chevalley group over k . Then G has t h e s t r u c t u r e of a complex L ie group, and a l l t h e preceding s t a t emen t s have obvious mod i f i ca t ions i n t h e language of L i e g roups , a l l of which a r e t r u e . For example, a l l complex semisimple L ie grougs a r e inc luded i n t h e c o n s t r u c t i o n , and i n Theorem 7 i s an isomorphism of complex a n a l y t i c manifolds .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twelve Bridges from a Reductive Group to Its Langlands Dual

Introduction. These notes are based on a series of lectures given by the author at the Central China Normal University in Wuhan (July 2007). The aim of the lectures was to provide an introduction to the Langlands philosophy. According to a theorem of Chevalley, connected reductive split algebraic groups over a fixed field A are in bijection with certain combinatorial objects called root systems...

متن کامل

Some Results on the Extension of Operators

1. C. Chevalley and A. Weil, Über das Verhaken der Integrale. 1. Gattung bei Automorphismen des Funktionenkörpers, Abh. Math. Sem. Univ. Hamburg 10 (1934), 358-361. 2. R. C. Gunning, Lectures on modular forms, Princeton Univ. Press, Princeton, N. J., 1962. 3. J. Lewittes, Automorphisms of compact Riemann surfaces. Thesis, Yeshiva University, New York, 1962. 4. B. Schoeneberg, Über die Weier str...

متن کامل

Generation of Pairs of Short Root Subgroups in Chevalley Groups

On the basis of the Bruhat decomposition, the subgroups generated by pairs of unipotent short root subgroups in Chevalley groups of type B , C , and F4 over an arbitrary field are described. Moreover, the orbits of a Chevalley group acting by conjugation on such pairs are classified.

متن کامل

Chevalley Groups over Commutative Rings I. Elementary Calculations

This is the rst in a series of papers dedicated to the structure of Chevalley groups over commutative rings. The goal of this series is to systematically develop methods of calculations in Chevalley groups over rings, based on the use of their minimal modules. As an application we give new direct proofs for normality of the elementary subgroup, description of normal subgroups and similar result...

متن کامل

Identity with Constants in a Chevalley Group of Type F4 v. Nesterov and A. Stepanov

N. L. Gordeev proved that a generalized group identity holds in Chevalley groups with multiply laced root systems. It was also shown that a stronger identity is valid for the Chevalley groups of types Bl and Cl. In the present paper, it is proved that this strong identity is fulfilled in Chevalley groups of type F4 and fails to be true in Chevalley groups of type G2. The main result of the pape...

متن کامل

On the Stability of the K -Functor for Chevalley 1 Groups of Type E7

This paper is devoted to the study of the surjective stability of the K -functor for 1 Chevalley groups of type E . This is a particular case of the stability problem for 7 Chevalley groups, which was posed by H. Bass. In this paper, surjective stability of the K -functor is proved under natural conditions on the dimension of the maximal 1 spectrum of a ring and, independently, under a special ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007