Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals

نویسندگان

  • Frank Duzaar
  • Klaus Steffen
چکیده

We give a new proof of the small excess regularity theorems for integer multiplicity recti able currents of arbitrary dimension and codimension minimizing an elliptic parametric variational integral. This proof does not use indirect blow-up arguments, it covers interior and boundary regularity, it applies to almost minimizing currents, and it gives an explicit and often optimal modulus of continuity for the derivative, i.e. for the tangent plane eld of the almost minimizing currents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the regularity of local minimizers of decomposable variational integrals on domains in R

We consider local minimizers u: R2 ⊃ Ω → RN of variational integrals like ∫ Ω[(1+ |∂1u|)+(1+ |∂2u|)] dx or its degenerate variant ∫ Ω[|∂1u|+ |∂2u|] dx with exponents 2 ≤ p < q < ∞ which do not fall in the category studied in [BF2]. We prove interior C1,αrespectively C1-regularity of u under the condition that q < 2p. For decomposable variational integrals of arbitrary order a similar result is ...

متن کامل

Interior gradient regularity for BV minimizers of singular variational problems

We consider a class of vectorial integrals with linear growth, where, as a key feature, some degenerate/singular behavior is allowed. For generalized minimizers of these integrals in BV, we establish interior gradient regularity and — as a consequence — uniqueness up to constants. In particular, these results apply, for 1 < p < 2, to the singular model integrals ∫ Ω (1 + |∇w(x)|) 1 p dx . MSC (...

متن کامل

Partial Regularity for Almost Minimizers of Quasi-Convex Integrals

We consider almost minimizers of variational integrals whose integrands are quasiconvex. Under suitable growth conditions on the integrand and on the function determining the almost minimality, we establish almost everywhere regularity for almost minimizers and obtain results on the regularity of the gradient away from the singular set. We give examples of problems from the calculus of variatio...

متن کامل

Partial Regularity for Degenerate Variational Problems and Image Restoration Models in Bv

We establish partial and local C1,α-regularity results for vectorial almost-minimizers of convex variational integrals in BV. In particular, we investigate cases with a degenerate or singular behavior of p-Laplace type, and we cover (local) minimizers of the exemplary integrals ∫

متن کامل

A simple partial regularity proof for minimizers of variational integrals

We consider multi-dimensional variational integrals F [u] := Ω f (·, u, Du) dx where the integrand f is a strictly convex function of its last argument. We give an elementary proof for the partial C 1,α-regularity of minimizers of F. Our approach is based on the method of A-harmonic approximation, avoids the use of Gehring's lemma, and establishes partial regularity with the optimal Hölder expo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007