Bayesian Optimal No-Deficit Mechanism Design
نویسندگان
چکیده
One of the most fundamental problems in mechanism design is that of designing the auction that gives the optimal profit to the auctioneer. For the case that the probability distributions on the valuations of the bidders are known and independent, Myerson [15] reduces the problem to that of maximizing the common welfare by considering the virtual valuations in place of the bidders’ actual valuations. The Myerson auction maximizes the seller’s profit over the class of all mechanisms that are truthful and individually rational for all the bidders; however, the mechanism does not satisfy ex post individual rationality for the seller. In other words, there are examples in which for certain sets of bidder valuations, the mechanism incurs a loss. We consider the problem of merging the worst case no-deficit (or ex post seller individual rationality) condition with this average case Bayesian expected profit maximization problem. When restricting our attention to ex post incentive compatible mechanisms for this problem, we find that the Myerson mechanism is the optimal no-deficit mechanism for supermodular costs, that Myerson merged with a simple thresholding mechanism is optimal for all-or-nothing costs, and that neither mechanism is optimal for general submodular costs. Addressing the computational side of the problem, we note that for supermodular costs the Myerson mechanism is NP-hard to compute. Furthermore, we show that for all-or-nothing costs the optimal thresholding mechanism is NP-hard to compute. Finally, we consider relaxing the ex post incentive compatibility constraint and show that there is a Bayesian incentive compatible mechanism that achieves the same expected profit as Myerson, but never incurs a loss.
منابع مشابه
An Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملSocial Decision with Minimal Efficiency Loss: An Automated Mechanism Design Approach
We study the problem where a group of agents need to choose from a finite set of social outcomes. We assume every agent’s valuation for every outcome is bounded and the bounds are public information. For our model, no mechanism simultaneously satisfies strategy-proofness, individual rationality, non-deficit, and efficiency. In light of this, we aim to design mechanisms that are strategy-proof, ...
متن کاملA New Acceptance Sampling Design Using Bayesian Modeling and Backwards Induction
In acceptance sampling plans, the decisions on either accepting or rejecting a specific batch is still a challenging problem. In order to provide a desired level of protection for customers as well as manufacturers, in this paper, a new acceptance sampling design is proposed to accept or reject a batch based on Bayesian modeling to update the distribution function of the percentage of nonconfor...
متن کاملBayesian Mechanism Design with Efficiency, Privacy, and Approximate Truthfulness
Recently, there has been a number of papers relating mechanism design and privacy (e.g., see [MT07, Xia11, CCK11, NST12, NOS12, HK12]). All of these papers consider a worst-case setting where there is no probabilistic information about the players’ types. In this paper, we investigate mechanism design and privacy in the Bayesian setting, where the players’ types are drawn from some common distr...
متن کامل