On partitioning the edges of 1-plane graphs

نویسندگان

  • William J. Lenhart
  • Giuseppe Liotta
  • Fabrizio Montecchiani
چکیده

A 1-plane graph is a graph embedded in the plane such that each edge is crossed at most once. A 1-plane graph is optimal if it has maximum edge density. A red-blue edge coloring of an optimal 1-plane graph G partitions the edge set of G into blue edges and red edges such that no two blue edges cross each other and no two red edges cross each other. We prove the following: (i) Every optimal 1-plane graph has a red-blue edge coloring such that the blue subgraph is maximal planar while the red subgraph is K4-free and has vertex degree at most four; this bound on the vertex degree is worst-case optimal. (ii) A red-blue edge coloring may not always induce a red forest of bounded vertex degree. Applications of these results to graph augmentation and graph drawing are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thickness of Bar 1-Visibility Graphs

Bar k-visibility graphs are graphs admitting a representation in which the vertices correspond to horizontal line segments, called bars, and the edges correspond to vertical lines of sight which can traverse up to k bars. These graphs were introduced by Dean et al. [3] who conjectured that bar 1-visibility graphs have thickness at most 2. We construct a bar 1-visibility graph having thickness 3...

متن کامل

On the variable sum exdeg index and cut edges of graphs

The variable sum exdeg index of a graph G is defined as $SEI_a(G)=sum_{uin V(G)}d_G(u)a^{d_G(u)}$, where $aneq 1$ is a positive real number,  du(u) is the degree of a vertex u ∈ V (G). In this paper, we characterize the graphs with the extremum variable sum exdeg index among all the graphs having a fixed number of vertices and cut edges, for every a>1.

متن کامل

Parameters of Bar k-Visibility Graphs

Bar k-visibility graphs are graphs admitting a representation in which the vertices correspond to horizontal line segments, called bars, and the edges correspond to vertical lines of sight which can traverse up to k bars. These graphs were introduced by Dean et al. [4] who conjectured that bar 1-visibility graphs have thickness at most 2. We construct a bar 1-visibility graph having thickness 3...

متن کامل

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...

متن کامل

On the revised edge-Szeged index of graphs

The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 662  شماره 

صفحات  -

تاریخ انتشار 2017