Contribution of anaerobic metabolism to reactive hyperemia in skeletal muscle.

نویسندگان

  • András Tóth
  • Miklos Pal
  • Marcos Intaglietta
  • Paul C Johnson
چکیده

Elevated blood flow (reactive hyperemia) is seen in many organs after a period of blood flow stoppage. This hyperemia is often considered to be due in part to a shift to anaerobic metabolism during tissue hypoxia. The aim of our study was to test this hypothesis in skeletal muscle. For this purpose we measured NADH fluorescence at localized tissue areas in cat sartorius muscle during and after arterial occlusions of 5-300 s. In parallel studies, red blood cell (RBC) velocity was measured in venules. Tissue NADH fluorescence rose significantly with occlusions of 45 s or greater, reaching a maximum of 44% above control at 180 s. Peak RBC velocity rose to four times control as occlusion duration was increased from 5 to 45 s, but hyperemia duration was stable at approximately 70 s. With occlusions of 45-240 s, hyperemia duration increased progressively to 210 s while peak flow was unchanged. However, after 300-s occlusions, peak flow rose to six times above control and hyperemia duration fell to 140 s. With occlusions of 45-300 s the time integral both of increased NADH fluorescence and of reduced fluorescence following occlusion release showed a high degree of correlation with the additional hyperemia. We conclude that in this muscle anaerobic vasodilator metabolites are responsible for the increase in reactive hyperemia with arterial occlusions longer than 45 s. Since the durations of reactive hyperemia and reduced fluorescence are substantially different, vasodilator metabolite removal may be due to washout by the bloodstream rather than metabolic uptake.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of ischemia on tissue metabolites in red (slow) and white (fast) skeletal muscle of the chicken.

Brief periods of ischemia have been shown to produce marked reactive hyperemia in both red (slow) and white (fast) skeletal muscle. However, evidence is lacking for specific vasodilator metabolites which are rapidly produced in ischemic skeletal muscle. The present study examined the effects of 1 and 3 minutes of ischemia on creatine phosphate (CrP), adenine nucleotide metabolism, and anaerobic...

متن کامل

A modular NIRS system for clinical measurement of impaired skeletal muscle oxygenation.

Near-infrared spectrometry (NIRS) is a well-known method used to measure in vivo tissue oxygenation and hemodynamics. This method is used to derive relative measures of hemoglobin (Hb) + myoglobin (Mb) oxygenation and total Hb (tHb) accumulation from measurements of optical attenuation at discrete wavelengths. We present the design and validation of a new NIRS oxygenation analyzer for the measu...

متن کامل

Nitric oxide and vasodilation in human limbs.

Both the skeletal muscle and skin of humans possess remarkable abilities to vasodilate. Marked vasodilation can be seen in these vascular beds in response to a variety of common physiological stimuli. These stimuli include reactive hyperemia (skin and muscle), exercise hyperemia (muscle), mental stress (muscle), and whole body heating (skin). The physiological mechanisms that cause vasodilation...

متن کامل

Biomonitoring the skeletal muscle metabolic dysfunction in knee osteoarthritis in older adults: Is Jumpstart Nutrition® Supplementation effective?

Background: This study aimed to investigate the efficacy of Jumpstart Nutrition® dietary supplement (JNDS) for enhancing the skeletal muscle metabolism and function of older adults with knee osteoarthritis (KOA) by evaluating the biomarkers of aberrant levels of serum tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), C-reactive protein (CRP), creatine kinase-muscle (CK-MM), and aldol...

متن کامل

Evidence of a metabolic reserve in the skeletal muscle of elderly people

The purpose of the present study was to determine whether mitochondrial function is limited by O2 availability or the intrinsic capacity of mitochondria to synthesize ATP in elderly individuals. To this aim, we examined, in comparison to free-flow conditions (FF), the effect of superimposing reactive hyperemia (RH), induced by a period of brief ischemia during the last min of exercise, on O2 av...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 292 6  شماره 

صفحات  -

تاریخ انتشار 2007